MAntRA: A framework for model agnostic reliability analysis
- URL: http://arxiv.org/abs/2212.06303v1
- Date: Tue, 13 Dec 2022 00:57:09 GMT
- Title: MAntRA: A framework for model agnostic reliability analysis
- Authors: Yogesh Chandrakant Mathpati and Kalpesh Sanjay More and Tapas Tripura
and Rajdip Nayek and Souvik Chakraborty
- Abstract summary: We propose a novel model data-driven reliability analysis framework for time-dependent reliability analysis.
The proposed approach combines interpretable machine learning, Bayesian statistics, and identifying dynamic equation.
Results indicate the possible application of the proposed approach for reliability analysis of insitu and heritage structures from on-site measurements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a novel model agnostic data-driven reliability analysis framework
for time-dependent reliability analysis. The proposed approach -- referred to
as MAntRA -- combines interpretable machine learning, Bayesian statistics, and
identifying stochastic dynamic equation to evaluate reliability of
stochastically-excited dynamical systems for which the governing physics is
\textit{apriori} unknown. A two-stage approach is adopted: in the first stage,
an efficient variational Bayesian equation discovery algorithm is developed to
determine the governing physics of an underlying stochastic differential
equation (SDE) from measured output data. The developed algorithm is efficient
and accounts for epistemic uncertainty due to limited and noisy data, and
aleatoric uncertainty because of environmental effect and external excitation.
In the second stage, the discovered SDE is solved using a stochastic
integration scheme and the probability failure is computed. The efficacy of the
proposed approach is illustrated on three numerical examples. The results
obtained indicate the possible application of the proposed approach for
reliability analysis of in-situ and heritage structures from on-site
measurements.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - FUSE: Fast Unified Simulation and Estimation for PDEs [11.991297011923004]
We argue that solving both problems within the same framework can lead to consistent gains in accuracy and robustness.
We present the capabilities of the proposed methodology for predicting continuous and discrete biomarkers in full-body haemodynamics simulations.
arXiv Detail & Related papers (2024-05-23T13:37:26Z) - Probabilistic Numeric SMC Sampling for Bayesian Nonlinear System Identification in Continuous Time [0.0]
In engineering, accurately modeling nonlinear dynamic systems from data contaminated by noise is both essential and complex.
The integration of continuous-time ordinary differential equations (ODEs) is crucial for aligning theoretical models with discretely sampled data.
This paper demonstrates the application of a probabilistic numerical method for solving ODEs in the joint parameter-state identification of nonlinear dynamic systems.
arXiv Detail & Related papers (2024-04-19T14:52:14Z) - Statistical Mechanics of Dynamical System Identification [3.1484174280822845]
We develop a statistical mechanical approach to analyze sparse equation discovery algorithms.
In this framework, statistical mechanics offers tools to analyze the interplay between complexity and fitness.
arXiv Detail & Related papers (2024-03-04T04:32:28Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
We propose a hybrid approach where Laplace-based Bayesian inference is combined with an ANN architecture for obtaining approximations to the ODE trajectories.
The effectiveness of our proposed methods is demonstrated using an epidemiological system with non-analytical solutions, the Susceptible-Infectious-Removed (SIR) model for infectious diseases.
arXiv Detail & Related papers (2022-10-17T09:02:41Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics
and Extract Noise Probability Distributions from Data [4.996878640124385]
SINDy is a framework for the discovery of parsimonious dynamic models and equations from time-series data.
We develop a variant of the SINDy algorithm that integrates automatic differentiation and recent time-stepping constrained by Rudy et al.
We show the method can identify a diversity of probability distributions including Gaussian, uniform, Gamma, and Rayleigh.
arXiv Detail & Related papers (2020-09-12T23:52:25Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.