Current experimental upper bounds on spacetime diffusion
- URL: http://arxiv.org/abs/2403.08912v1
- Date: Wed, 13 Mar 2024 19:00:54 GMT
- Title: Current experimental upper bounds on spacetime diffusion
- Authors: Martijn Janse, Dennis G. Uitenbroek, Loek van Everdingen, Jaimy Plugge, Bas Hensen, Tjerk H. Oosterkamp,
- Abstract summary: A consistent theory describing the dynamics of quantum systems interacting on a classical space-time was recently put forward by Oppenheimn et al.
Here, we report existing experimental upper bounds on such space-time diffusion based on a review of several types of experiments with very low force noise.
We find an upper bound at least 15 orders of magnitude lower as compared to the initial bounds for explicit models presented by Oppenheimn et al.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A consistent theory describing the dynamics of quantum systems interacting on a classical space-time was recently put forward by Oppenheim et al..[1, 2]. Quantum states may retain their coherence, at the cost of some amount of stochasticity of the spacetime metric, characterized by a spacetime diffusion parameter. Here, we report existing experimental upper bounds on such space-time diffusion, based on a review of several types of experiments with very low force noise over a broad range of test masses from single atoms to several kilograms. We find an upper bound at least 15 orders of magnitude lower as compared to the initial bounds for explicit models presented by Oppenheimn et al. The results presented here provide a path forward for future experiments that can help evaluate classical-quantum theories
Related papers
- Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - The weak field limit of quantum matter back-reacting on classical
spacetime [0.0]
Consistent coupling of quantum and classical degrees of freedom exists so long as there is diffusion of the classical degrees of freedom and decoherence of the quantum system.
We derive the Newtonian limit of such classical-quantum (CQ) theories of gravity.
arXiv Detail & Related papers (2023-07-05T18:01:06Z) - Gravity mediated entanglement between light beams as a table-top test of
quantum gravity [0.0]
There is still no experimental evidence of any non-classical features of gravity.
Recent table-top protocols based on low-energy quantum control have opened a new avenue into the investigation of non-classical gravity.
arXiv Detail & Related papers (2022-10-23T12:17:14Z) - Light-shift induced behaviors observed in momentum-space quantum walks [47.187609203210705]
We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data.
Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates.
arXiv Detail & Related papers (2022-05-16T14:50:05Z) - Gravitationally induced decoherence vs space-time diffusion: testing the
quantum nature of gravity [0.0]
We consider two interacting systems when one is treated classically while the other system remains quantum.
We prove that such hybrid dynamics necessarily results in decoherence of the quantum system, and a breakdown in predictability in the classical phase space.
Applying the trade-off relation to gravity, we find a relationship between the strength of gravitationally-induced decoherence versus diffusion of the metric and its conjugate momenta.
arXiv Detail & Related papers (2022-03-03T19:52:11Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Quantum gravitational decoherence from fluctuating minimal length and
deformation parameter at the Planck scale [0.0]
We introduce a decoherence process due to quantum gravity effects.
We find that the decoherence rate predicted by our model is extremal, being minimal in the deep quantum regime below the Planck scale and maximal in the mesoscopic regime beyond it.
arXiv Detail & Related papers (2020-11-02T19:01:16Z) - Tests of Quantum Gravity near Measurement Events [0.0]
We propose less challenging experiments that test quantum gravity against theories with classical space-times defined by postulating semi-classical gravity for mesoscopic systems.
arXiv Detail & Related papers (2020-10-22T15:44:30Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.