Deep Learning Based Dynamics Identification and Linearization of Orbital Problems using Koopman Theory
- URL: http://arxiv.org/abs/2403.08965v1
- Date: Wed, 13 Mar 2024 21:11:58 GMT
- Title: Deep Learning Based Dynamics Identification and Linearization of Orbital Problems using Koopman Theory
- Authors: George Nehma, Madhur Tiwari, Manasvi Lingam,
- Abstract summary: We propose a framework for simultaneous system identification and global linearization of the Two-Body Problem and Circular Restricted Three-Body Problem.
This paper displays the ability of the Koopman operator to generalize to various other Two-Body systems without the need for retraining.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of the Two-Body and Circular Restricted Three-Body Problems in the field of aerospace engineering and sciences is deeply important because they help describe the motion of both celestial and artificial satellites. With the growing demand for satellites and satellite formation flying, fast and efficient control of these systems is becoming ever more important. Global linearization of these systems allows engineers to employ methods of control in order to achieve these desired results. We propose a data-driven framework for simultaneous system identification and global linearization of both the Two-Body Problem and Circular Restricted Three-Body Problem via deep learning-based Koopman Theory, i.e., a framework that can identify the underlying dynamics and globally linearize it into a linear time-invariant (LTI) system. The linear Koopman operator is discovered through purely data-driven training of a Deep Neural Network with a custom architecture. This paper displays the ability of the Koopman operator to generalize to various other Two-Body systems without the need for retraining. We also demonstrate the capability of the same architecture to be utilized to accurately learn a Koopman operator that approximates the Circular Restricted Three-Body Problem.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Limits and Powers of Koopman Learning [0.0]
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences.
Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques.
This paper addresses a fundamental open question: textitWhen can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not?
arXiv Detail & Related papers (2024-07-08T18:24:48Z) - Learning to Solve Geometry Problems via Simulating Human Dual-Reasoning Process [84.49427910920008]
Geometry Problem Solving (GPS) has attracted much attention in recent years.
It requires a solver to comprehensively understand both text and diagram, master essential geometry knowledge, and appropriately apply it in reasoning.
Existing works follow a paradigm of neural machine translation and only focus on enhancing the capability of encoders, which neglects the essential characteristics of human geometry reasoning.
arXiv Detail & Related papers (2024-05-10T03:53:49Z) - Koopman-Assisted Reinforcement Learning [8.812992091278668]
The Bellman equation and its continuous form, the Hamilton-Jacobi-Bellman (HJB) equation, are ubiquitous in reinforcement learning (RL) and control theory.
This paper explores the connection between the data-driven Koopman operator and Decision Processes (MDPs)
We develop two new RL algorithms to address these limitations.
arXiv Detail & Related papers (2024-03-04T18:19:48Z) - Online Learning of Wheel Odometry Correction for Mobile Robots with
Attention-based Neural Network [63.8376359764052]
Modern robotic platforms need a reliable localization system to operate daily beside humans.
Simple pose estimation algorithms based on filtered wheel and inertial odometry often fail in the presence of abrupt kinematic changes and wheel slips.
We propose an innovative online learning approach for wheel odometry correction, paving the way for a robust multi-source localization system.
arXiv Detail & Related papers (2023-03-21T10:30:31Z) - Physics-Informed Koopman Network [14.203407036091555]
We propose a novel architecture inspired by physics-informed neural networks to represent Koopman operators.
We demonstrate that it not only reduces the need of large training data-sets, but also maintains high effectiveness in approximating Koopman eigenfunctions.
arXiv Detail & Related papers (2022-11-17T08:57:57Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Modern Koopman Theory for Dynamical Systems [2.5889588665122725]
We provide an overview of modern Koopman operator theory, describing recent theoretical and algorithmic developments.
We also discuss key advances and challenges in the rapidly growing field of machine learning.
arXiv Detail & Related papers (2021-02-24T06:18:16Z) - Physical System for Non Time Sequence Data [0.0]
We propose a novelty approach to connect machine learning to causal structure learning by jacobian matrix of neural network w.r.t. input variables.
arXiv Detail & Related papers (2020-10-07T06:27:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.