論文の概要: AutoGuide: Automated Generation and Selection of Context-Aware Guidelines for Large Language Model Agents
- arxiv url: http://arxiv.org/abs/2403.08978v2
- Date: Tue, 03 Dec 2024 07:36:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:39:49.168141
- Title: AutoGuide: Automated Generation and Selection of Context-Aware Guidelines for Large Language Model Agents
- Title(参考訳): AutoGuide:大規模言語モデルエージェントのためのコンテキスト認識ガイドラインの自動生成と選択
- Authors: Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae, Honglak Lee,
- Abstract要約: オフライン体験からコンテキスト認識ガイドラインを自動的に生成する,AutoGuideという新しいフレームワークを導入する。
その結果,本ガイドラインはエージェントの現在の意思決定プロセスに関連性のある知識の提供を促進する。
評価の結果, AutoGuide は複雑なベンチマーク領域において, 競争ベースラインを著しく上回っていることがわかった。
- 参考スコア(独自算出の注目度): 74.17623527375241
- License:
- Abstract: Recent advances in large language models (LLMs) have empowered AI agents capable of performing various sequential decision-making tasks. However, effectively guiding LLMs to perform well in unfamiliar domains like web navigation, where they lack sufficient knowledge, has proven to be difficult with the demonstration-based in-context learning paradigm. In this paper, we introduce a novel framework, called AutoGuide, which addresses this limitation by automatically generating context-aware guidelines from offline experiences. Importantly, each context-aware guideline is expressed in concise natural language and follows a conditional structure, clearly describing the context where it is applicable. As a result, our guidelines facilitate the provision of relevant knowledge for the agent's current decision-making process, overcoming the limitations of the conventional demonstration-based learning paradigm. Our evaluation demonstrates that AutoGuide significantly outperforms competitive baselines in complex benchmark domains, including real-world web navigation.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、様々なシーケンシャルな意思決定タスクを実行することができるAIエージェントに力を与えている。
しかし、十分な知識が不足しているWebナビゲーションのような不慣れな領域では、LLMを効果的に導くことは、デモベースのインコンテキスト学習パラダイムでは困難であることが証明されている。
本稿では,オフライン体験からコンテキスト認識ガイドラインを自動的に生成することで,この制限に対処する,AutoGuideという新しいフレームワークを紹介する。
重要なことに、各文脈対応ガイドラインは簡潔な自然言語で表現され、条件構造に従っており、その適用状況を明確に記述している。
その結果,本ガイドラインは,従来の実証に基づく学習パラダイムの限界を克服し,エージェントの現在の意思決定プロセスに関する関連知識の提供を促進する。
評価の結果,AutoGuideは,実世界のWebナビゲーションを含む複雑なベンチマーク領域において,競争上のベースラインを著しく上回っていることがわかった。
関連論文リスト
- SAME: Learning Generic Language-Guided Visual Navigation with State-Adaptive Mixture of Experts [54.11162991206203]
本稿では,多様なナビゲーションタスクを統一的で汎用的なフレームワークに統合する。
本稿では,エージェントによる意思決定の推論を効果的に行うことのできる,新しい状態適応型エキスパート混合モデルを提案する。
論文 参考訳(メタデータ) (2024-12-07T06:12:53Z) - RAG-Driver: Generalisable Driving Explanations with Retrieval-Augmented In-Context Learning in Multi-Modal Large Language Model [22.25903116720301]
説明責任は、信頼できる自律的な意思決定において重要な役割を果たす。
MLLM(Multi-Modal Large Language Model)の最近の進歩は、駆動エージェントとしての説明可能性を高める有望な可能性を示している。
提案するRAG-Driverは,高機能,説明性,一般化可能な自律運転にコンテキスト内学習を活用する,検索強化型多モード大言語モデルである。
論文 参考訳(メタデータ) (2024-02-16T16:57:18Z) - DFA-RAG: Conversational Semantic Router for Large Language Model with Definite Finite Automaton [44.26173742405563]
本稿では,Definite Finite Automaton (DFA-RAG)を用いた検索強化大言語モデルを提案する。
DFA-RAGは,大規模言語モデル(LLM)を用いた対話エージェントの機能向上を目的としたフレームワークである。
論文 参考訳(メタデータ) (2024-02-06T21:14:45Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - Fast-Slow Test-Time Adaptation for Online Vision-and-Language Navigation [67.18144414660681]
オンラインビジョン・アンド・ランゲージナビゲーション(VLN)のためのFSTTA(Fast-Slow Test-Time Adaptation)アプローチを提案する。
提案手法は,4つのベンチマークにおいて顕著な性能向上を実現する。
論文 参考訳(メタデータ) (2023-11-22T07:47:39Z) - Guideline Learning for In-context Information Extraction [29.062173997909028]
インコンテキスト情報抽出(IE)は近年,研究コミュニティで注目を集めている。
この欠点の主な理由として,未特定なタスク記述を挙げる。
In-context IEのためのガイドライン学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-08T08:25:16Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Natural Language based Context Modeling and Reasoning for Ubiquitous
Computing with Large Language Models: A Tutorial [35.743576799998564]
大規模言語モデル(LLM)は、コンテキスト対応コンピューティングを導入してから20年が経ち、2018年以来、驚くほど急増している。
本チュートリアルでは,テキスト,プロンプト,自律エージェント(AutoAgents)の使用を実演し,LLMが文脈モデリングや推論を行うことを可能にする。
論文 参考訳(メタデータ) (2023-09-24T00:15:39Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
本稿では,言語埋め込みの高速適応を実現するために,プロンプトベースの学習を導入する。
我々のモデルは、VLNやREVERIEを含む多様な視覚言語ナビゲーションタスクに適応することができる。
論文 参考訳(メタデータ) (2022-03-08T11:01:24Z) - AutoPrompt: Eliciting Knowledge from Language Models with Automatically
Generated Prompts [46.03503882865222]
AutoPromptは、勾配誘導検索に基づいて、さまざまなタスクセットのプロンプトを作成する自動メソッドである。
マスク付き言語モデル(MLM)は,感情分析や自然言語推論を,追加パラメータや微調整を伴わずに行う能力を持つことを示す。
論文 参考訳(メタデータ) (2020-10-29T22:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。