論文の概要: The Synergy of LLMs & RL Unlocks Offline Learning of Generalizable Language-Conditioned Policies with Low-fidelity Data
- arxiv url: http://arxiv.org/abs/2412.06877v2
- Date: Fri, 06 Jun 2025 11:05:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:42.740008
- Title: The Synergy of LLMs & RL Unlocks Offline Learning of Generalizable Language-Conditioned Policies with Low-fidelity Data
- Title(参考訳): 低忠実度データを用いたLLMとRLの相乗効果
- Authors: Thomas Pouplin, Katarzyna Kobalczyk, Hao Sun, Mihaela van der Schaar,
- Abstract要約: TEDUOは、シンボリック環境におけるオフライン言語条件のポリシー学習のための、新しいトレーニングパイプラインである。
まず、オフラインデータセットをよりリッチなアノテーションで拡張する自動化ツールとして、次に、一般化可能な命令フォローエージェントとして使用します。
- 参考スコア(独自算出の注目度): 50.544186914115045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing autonomous agents capable of performing complex, multi-step decision-making tasks specified in natural language remains a significant challenge, particularly in realistic settings where labeled data is scarce and real-time experimentation is impractical. Existing reinforcement learning (RL) approaches often struggle to generalize to unseen goals and states, limiting their applicability. In this paper, we introduce TEDUO, a novel training pipeline for offline language-conditioned policy learning in symbolic environments. Unlike conventional methods, TEDUO operates on readily available, unlabeled datasets and addresses the challenge of generalization to previously unseen goals and states. Our approach harnesses large language models (LLMs) in a dual capacity: first, as automatization tools augmenting offline datasets with richer annotations, and second, as generalizable instruction-following agents. Empirical results demonstrate that TEDUO achieves data-efficient learning of robust language-conditioned policies, accomplishing tasks beyond the reach of conventional RL frameworks or out-of-the-box LLMs alone.
- Abstract(参考訳): 自然言語で指定された複雑な多段階の意思決定タスクを実行できる自律エージェントの開発は、特にラベル付きデータが不足し、リアルタイムの実験が非現実的な現実的な環境では、依然として大きな課題である。
既存の強化学習(RL)アプローチは、しばしば、見つからない目標や状態に一般化し、適用性を制限するのに苦労する。
本稿では,シンボリック環境におけるオフライン言語条件ポリシー学習のための新しいトレーニングパイプラインTEDUOを紹介する。
従来の方法とは異なり、TEDUOは利用可能な、ラベルのないデータセットを運用し、これまで見つからなかった目標や状態への一般化の課題に対処する。
まず、オフラインデータセットをよりリッチなアノテーションで拡張する自動化ツールとして、次に、一般化可能な命令フォローエージェントとして利用します。
その結果、TEDUOはロバストな言語条件のポリシーをデータ効率で学習し、従来のRLフレームワークやアウト・オブ・ザ・ボックス LLM 以外のタスクを達成できることが実証された。
関連論文リスト
- Large Language Models as Attribution Regularizers for Efficient Model Training [0.0]
大規模言語モデル(LLM)は、様々な領域で顕著なパフォーマンスを示している。
我々は,LLM生成したグローバルタスク特徴属性を,より小さなネットワークのトレーニングプロセスに組み込む方法を提案する。
我々のアプローチは、数ショットの学習シナリオにおいて優れたパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2025-02-27T16:55:18Z) - A Practical Guide to Fine-tuning Language Models with Limited Data [9.413178499853156]
事前訓練されたLarge Language Models (LLM) を採用することは、膨大なデータ要件にもかかわらず、自然言語処理(NLP)における事実上の標準となっている。
限られたデータを用いたLLMの学習に焦点をあてた最近の研究の急増に触発された本研究では、データ不足の下流タスクにおけるモデル性能を最適化するための、近年のトランスファー学習アプローチについて調査する。
論文 参考訳(メタデータ) (2024-11-14T15:55:37Z) - Large Language Models are Good Multi-lingual Learners : When LLMs Meet Cross-lingual Prompts [5.520335305387487]
本稿では,MLプロンプトという新しいプロンプト戦略を提案する。
MLPromptは、LLMが他の言語に追従するのに苦労するエラーを起こしやすいルールを翻訳する。
本稿では,MLPromptを構造化データ生成の自動チェック機構に統合するフレームワークと,テキストからMIPインスタンスへの特定のケーススタディを提案する。
論文 参考訳(メタデータ) (2024-09-17T10:33:27Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - CLAIM Your Data: Enhancing Imputation Accuracy with Contextual Large Language Models [0.18416014644193068]
本稿では,精度インプット法(CLAIM)の文脈言語モデルを提案する。
従来の計算法とは異なり、CLAIMは文脈に関連のある自然言語記述子を使用して、欠落した値を埋める。
多様なデータセットや欠落パターンに対する評価は,既存の計算手法よりもCLAIMの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-05-28T00:08:29Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。