論文の概要: 7T MRI Synthesization from 3T Acquisitions
- arxiv url: http://arxiv.org/abs/2403.08979v1
- Date: Wed, 13 Mar 2024 22:06:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 22:17:16.894081
- Title: 7T MRI Synthesization from 3T Acquisitions
- Title(参考訳): 3T取得による7T MRI合成
- Authors: Qiming Cui, Duygu Tosun, Reza Abbasi-Asl,
- Abstract要約: 改良されたディープラーニング技術は、3T MRI入力から合成された7T MRIを生成するために使用できる。
本稿では,V-Net畳み込みニューラルネットワークのカスタム設計版に基づく,新しい7T合成アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised deep learning techniques can be used to generate synthetic 7T MRIs from 3T MRI inputs. This image enhancement process leverages the advantages of ultra-high-field MRI to improve the signal-to-noise and contrast-to-noise ratios of 3T acquisitions. In this paper, we introduce multiple novel 7T synthesization algorithms based on custom-designed variants of the V-Net convolutional neural network. We demonstrate that the V-Net based model has superior performance in enhancing both single-site and multi-site MRI datasets compared to the existing benchmark model. When trained on 3T-7T MRI pairs from 8 subjects with mild Traumatic Brain Injury (TBI), our model achieves state-of-the-art 7T synthesization performance. Compared to previous works, synthetic 7T images generated from our pipeline also display superior enhancement of pathological tissue. Additionally, we implement and test a data augmentation scheme for training models that are robust to variations in the input distribution. This allows synthetic 7T models to accommodate intra-scanner and inter-scanner variability in multisite datasets. On a harmonized dataset consisting of 18 3T-7T MRI pairs from two institutions, including both healthy subjects and those with mild TBI, our model maintains its performance and can generalize to 3T MRI inputs with lower resolution. Our findings demonstrate the promise of V-Net based models for MRI enhancement and offer a preliminary probe into improving the generalizability of synthetic 7T models with data augmentation.
- Abstract(参考訳): 改良されたディープラーニング技術は、3T MRI入力から合成された7T MRIを生成するために使用できる。
この画像強調処理は、超高磁場MRIの利点を活用し、3T取得の信号対雑音比とコントラスト対雑音比を改善する。
本稿では,V-Net畳み込みニューラルネットワークのカスタム設計版に基づく,新しい7T合成アルゴリズムを提案する。
V-Netベースのモデルでは,既存のベンチマークモデルと比較して,シングルサイトおよびマルチサイトMRIデータセットの強化性能が優れていることが実証された。
軽度外傷性脳損傷(TBI)を有する8症例の3T-7T MRI対を訓練すると,本モデルでは最先端の7T合成性能が得られた。
従来の研究と比較すると, パイプラインから生成された合成7T画像は, 病理組織の改善に優れていた。
さらに、入力分布の変動に頑健なトレーニングモデルに対して、データ拡張スキームを実装し、テストする。
これにより、合成7Tモデルは、マルチサイトデータセットにおけるスキャン内およびスキャン間変動を許容できる。
健常者と軽度TBIを含む2つの施設の18の3T-7T MRI対からなる調和したデータセットにおいて,本モデルは,その性能を維持し,低分解能で3T MRI入力に一般化することができる。
以上の結果から,V-NetモデルによるMRI強調の可能性を実証し,データ拡張による合成7Tモデルの一般化性向上のための予備的調査を行った。
関連論文リスト
- Residual Vision Transformer (ResViT) Based Self-Supervised Learning Model for Brain Tumor Classification [0.08192907805418585]
自己教師付き学習モデルは、限られたデータセット問題に対するデータ効率と注目すべき解決策を提供する。
本稿では2段階の脳腫瘍分類のための生成型SSLモデルを提案する。
提案されたモデルが最も精度が高く、T1シークエンスでBraTsデータセットで90.56%、Figshareで98.53%、Kaggle脳腫瘍データセットで98.47%を達成している。
論文 参考訳(メタデータ) (2024-11-19T21:42:57Z) - Guided Synthesis of Labeled Brain MRI Data Using Latent Diffusion Models for Segmentation of Enlarged Ventricles [0.4188114563181614]
医学的コンテキストにおけるディープラーニングモデルは、データの不足、不均一性、プライバシー上の懸念といった課題に直面します。
本研究は, 合成データを用いた脳MRI画像の心室セグメンテーションの改善に焦点を当てた。
論文 参考訳(メタデータ) (2024-11-02T19:44:10Z) - Reconstructing Retinal Visual Images from 3T fMRI Data Enhanced by Unsupervised Learning [2.1597860906272803]
GAN(unsupervised Generative Adversarial Network)を通して3T fMRIデータを生成する新しいフレームワークを提案する。
本稿では,3T fMRIデータの再構成能力を実証し,優れた入力画像を生成する能力を強調した。
論文 参考訳(メタデータ) (2024-04-07T23:31:37Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
本研究は肝病変分類のための新しいSDR-Formerフレームワークを提案する。
提案フレームワークは2つの臨床データセットに関する総合的な実験を通じて検証された。
科学コミュニティを支援するため,肝病変解析のための多段階MRデータセットを公開しています。
論文 参考訳(メタデータ) (2024-02-27T06:32:56Z) - Transferring Ultrahigh-Field Representations for Intensity-Guided Brain
Segmentation of Low-Field Magnetic Resonance Imaging [51.92395928517429]
7T MRIの使用は、低磁場MRIと比較して高コストでアクセシビリティが低いため制限されている。
本研究では,入力されたLF磁気共鳴特徴表現と,脳画像分割タスクのための7T様特徴表現とを融合したディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-13T12:21:06Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
本稿では,T1重み付き画像(T1WIs)を補助モダリティとして活用し,T2WIsの取得を高速化するエンド・ツー・エンドのディープラーニングフレームワークを提案する。
最適輸送(OT)を用いてT1WIを整列させてT2WIを合成し、クロスモーダル合成を行う。
再構成されたT2WIと合成されたT2WIがT2画像多様体に近づき、繰り返しが増加することを示す。
論文 参考訳(メタデータ) (2023-05-04T12:20:51Z) - Multiscale Metamorphic VAE for 3D Brain MRI Synthesis [5.060516201839319]
3次元脳MRIの創発的モデリングは、データ分布の十分なカバレッジを確保しつつ、高い視覚的忠実度を達成することの難しさを示す。
本研究では, この課題に対して, 可変オートエンコーダフレームワークにおける構成可能なマルチスケール形態素変換を用いて対処することを提案する。
VAEやGAN(Generative Adversarial Network)をベースとした先行作業と比較して,FIDの性能は,同等あるいは優れた再現品質を維持しつつ,大幅に向上した。
論文 参考訳(メタデータ) (2023-01-09T09:15:30Z) - A Comparative Study on 1.5T-3T MRI Conversion through Deep Neural
Network Models [0.0]
1.5T MRIから脳の3TライクなMR画像を生成するための、多くのディープニューラルネットワークモデルの能力について検討する。
本研究は,脳内MRI変換のための複数の深層学習ソリューションを評価するための最初の研究である。
論文 参考訳(メタデータ) (2022-10-12T16:14:42Z) - From Sound Representation to Model Robustness [82.21746840893658]
本研究では, 環境音の標準的な表現(スペクトログラム)が, 被害者の残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
3つの環境音響データセットの様々な実験から、ResNet-18モデルは、他のディープラーニングアーキテクチャよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-27T17:30:49Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
本稿では,難しい場合であっても,ハイブリッドベースラインに近い性能を示すエンドツーエンドアプローチについて論じる。
CTC-Attention と RNN-Transducer のアプローチと RNN と Transformer のアーキテクチャを比較し,解析する。
RNN-Transducerをベースとしたベストエンド・ツー・エンドモデルでは、ビームサーチの改善とともに、LF-MMI TDNN-F CHiME-6 Challengeのベースラインよりも品質が3.8%向上した。
論文 参考訳(メタデータ) (2020-04-22T19:08:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。