論文の概要: Safe Road-Crossing by Autonomous Wheelchairs: a Novel Dataset and its Experimental Evaluation
- arxiv url: http://arxiv.org/abs/2403.08984v1
- Date: Wed, 13 Mar 2024 22:19:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 22:17:16.887589
- Title: Safe Road-Crossing by Autonomous Wheelchairs: a Novel Dataset and its Experimental Evaluation
- Title(参考訳): 自律車いすによる安全な道路封鎖 -新しいデータセットとその実験的評価-
- Authors: Carlo Grigioni, Franca Corradini, Alessandro Antonucci, Jérôme Guzzi, Francesco Flammini,
- Abstract要約: 自動車椅子と空飛ぶドローンで構成されるシステムにおいて,道路横断決定を支援するマルチセンサ融合方式を提案する。
概念実証として,複数センサの利点を示す実験室環境の評価を行った。
この研究は欧州のプロジェクトREXASI-PROの文脈で開発され、モビリティを低下させた人々のソーシャルナビゲーションのための信頼できる人工知能の開発を目的としている。
- 参考スコア(独自算出の注目度): 42.90509901417468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe road-crossing by self-driving vehicles is a crucial problem to address in smart-cities. In this paper, we introduce a multi-sensor fusion approach to support road-crossing decisions in a system composed by an autonomous wheelchair and a flying drone featuring a robust sensory system made of diverse and redundant components. To that aim, we designed an analytical danger function based on explainable physical conditions evaluated by single sensors, including those using machine learning and artificial vision. As a proof-of-concept, we provide an experimental evaluation in a laboratory environment, showing the advantages of using multiple sensors, which can improve decision accuracy and effectively support safety assessment. We made the dataset available to the scientific community for further experimentation. The work has been developed in the context of an European project named REXASI-PRO, which aims to develop trustworthy artificial intelligence for social navigation of people with reduced mobility.
- Abstract(参考訳): 自動運転車による安全な道路横断は、スマートシティーにとって重要な問題だ。
本稿では,自律型車椅子と多種多様な部品と冗長な部品からなるロバストな感覚システムを備えた飛行ドローンからなるシステムにおいて,道路横断決定を支援するためのマルチセンサ融合手法を提案する。
そこで我々は,機械学習や人工視覚など,単一センサによって評価された説明可能な物理的条件に基づいて,分析的危険度関数を設計した。
概念実証として,複数センサの利点を示す実験室環境の評価を行った。
我々はこのデータセットを科学コミュニティに公開し、さらなる実験を行った。
この研究は欧州のプロジェクトREXASI-PROの文脈で開発され、モビリティを低下させた人々のソーシャルナビゲーションのための信頼できる人工知能の開発を目的としている。
関連論文リスト
- Pedestrian motion prediction evaluation for urban autonomous driving [0.0]
我々は、従来の動き予測指標の妥当性を決定するために、提供されたオープンソースソリューションを用いて、選択した出版物を解析する。
この視点は、既存の最先端の歩行者運動予測問題の現実的なパフォーマンスを探している、自動運転やロボット工学の潜在的なエンジニアにとって価値があるだろう。
論文 参考訳(メタデータ) (2024-10-22T10:06:50Z) - Experimental Evaluation of Road-Crossing Decisions by Autonomous Wheelchairs against Environmental Factors [42.90509901417468]
追跡性能の微調整と屋外環境要因に対する実験的評価に焦点をあてる。
本手法は,屋外環境要因に対する映像追跡とイベント検出の堅牢性を評価するために適用可能であることを示す。
論文 参考訳(メタデータ) (2024-05-27T08:43:26Z) - Incorporating Explanations into Human-Machine Interfaces for Trust and Situation Awareness in Autonomous Vehicles [4.1636282808157254]
自動車の自律性に対する信頼構築において、説明可能なAIとヒューマン・マシン・インタフェースが共に果たす役割について検討する。
自動運転行動に対するユーザの信頼度を調整するための状況認識フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T23:02:13Z) - Framework for Quality Evaluation of Smart Roadside Infrastructure
Sensors for Automated Driving Applications [2.0502751783060003]
本稿では,スマート道路インフラストラクチャセンサの詳細な品質評価を行うための新しい手法を提案する。
DAIR-V2Xデータセットで評価し,様々なセンサタイプにまたがるマルチモーダルなフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-16T10:21:07Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
最近の知覚システムは、センサー融合による空間理解を高めるが、しばしば完全な環境コンテキストを欠いている。
我々は,3台のカメラを統合し,人間の視野をエミュレートするフレームワークを導入し,トップダウンのバードアイビューセマンティックデータと組み合わせて文脈表現を強化する。
提案手法は, オープンループ設定において0.67mの変位誤差を達成し, nuScenesデータセットでは6.9%の精度で現在の手法を上回っている。
論文 参考訳(メタデータ) (2022-10-13T05:56:20Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
高速物体把握のための完全自律飛行ロボットが提案されている。
追加のサブタスクとして、我々のシステムは、表面に近い極にある気球を自律的にピアスすることができる。
我々のアプローチは、挑戦的な国際競争で検証され、優れた結果が得られました。
論文 参考訳(メタデータ) (2021-12-10T11:49:51Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
自動運転用画像入力における学習アルゴリズムw.r.tの堅牢性を解析するためのフレームワークについて紹介する。
感度分析の結果を用いて, 「操縦への学習」 タスクの総合的性能を向上させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-26T02:08:07Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
結果として得られる決定が摂動に対して堅牢であることは、最も重要なことです。
敵対的摂動は、意図的に環境や感覚測定の修正を施したものである。
より安全なシステムの構築とデプロイには,センサーシステムの脆弱性を慎重に評価する必要がある。
論文 参考訳(メタデータ) (2020-07-14T05:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。