論文の概要: Pedestrian motion prediction evaluation for urban autonomous driving
- arxiv url: http://arxiv.org/abs/2410.16864v1
- Date: Tue, 22 Oct 2024 10:06:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:50.361786
- Title: Pedestrian motion prediction evaluation for urban autonomous driving
- Title(参考訳): 都市自律運転における歩行者運動予測評価
- Authors: Dmytro Zabolotnii, Yar Muhammad, Naveed Muhammad,
- Abstract要約: 我々は、従来の動き予測指標の妥当性を決定するために、提供されたオープンソースソリューションを用いて、選択した出版物を解析する。
この視点は、既存の最先端の歩行者運動予測問題の現実的なパフォーマンスを探している、自動運転やロボット工学の潜在的なエンジニアにとって価値があるだろう。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Pedestrian motion prediction is a key part of the modular-based autonomous driving pipeline, ensuring safe, accurate, and timely awareness of human agents' possible future trajectories. The autonomous vehicle can use this information to prevent any possible accidents and create a comfortable and pleasant driving experience for the passengers and pedestrians. A wealth of research was done on the topic from the authors of robotics, computer vision, intelligent transportation systems, and other fields. However, a relatively unexplored angle is the integration of the state-of-art solutions into existing autonomous driving stacks and evaluating them in real-life conditions rather than sanitized datasets. We analyze selected publications with provided open-source solutions and provide a perspective obtained by integrating them into existing Autonomous Driving framework - Autoware Mini and performing experiments in natural urban conditions in Tartu, Estonia to determine valuability of traditional motion prediction metrics. This perspective should be valuable to any potential autonomous driving or robotics engineer looking for the real-world performance of the existing state-of-art pedestrian motion prediction problem. The code with instructions on accessing the dataset is available at https://github.com/dmytrozabolotnii/autoware_mini.
- Abstract(参考訳): 歩行者の動き予測は、モジュラーベースの自動運転パイプラインの重要な部分であり、人間のエージェントの将来の軌道に対する安全で正確でタイムリーな認識を確保する。
自動運転車は、この情報を使って事故の発生を防ぎ、乗客や歩行者にとって快適で快適な運転体験を作り出すことができる。
ロボット工学、コンピュータビジョン、インテリジェントトランスポートシステム、その他の分野の著者による、このトピックに関する豊富な研究が行われた。
しかし、比較的探索されていない角度は、最先端のソリューションを既存の自動運転スタックに統合し、衛生的なデータセットではなく現実の環境で評価することである。
提案するオープンソースソリューションを用いて,選択した出版物を解析し,既存の自律走行フレームワーク - Autoware Mini に統合し,エストニアのタルトゥの自然都市環境で実験を行い,従来の動き予測指標の妥当性を判定する視点を提供する。
この視点は、既存の最先端の歩行者運動予測問題の現実的なパフォーマンスを探している、自動運転やロボット工学の潜在的なエンジニアにとって価値があるだろう。
データセットへのアクセス指示付きコードはhttps://github.com/dmytrozabolotnii/autoware_mini.comで公開されている。
関連論文リスト
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Are you a robot? Detecting Autonomous Vehicles from Behavior Analysis [6.422370188350147]
本稿では,車両が自律的かどうかを判断するために,カメラ画像と状態情報を用いてアクティブな車両を監視するフレームワークを提案する。
基本的には、自動運転車を識別するための機械学習モデルを提供する道路上で取得したデータをシェアする車両間の協力に基づいて構築される。
実験により,ビデオクリップを80%の精度で解析することにより,2つの行動の識別が可能であることが確認された。
論文 参考訳(メタデータ) (2024-03-14T17:00:29Z) - Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges and Future Directions [2.693342141713236]
本稿では,過去10年間に出版されたコンピュータビジョンと自動運転に関する論文をレビューする。
特に、まず自律運転システムの開発について検討し、各国の主要自動車メーカーによって開発されたこれらのシステムを要約する。
そこで, 深度推定, 物体検出, 車線検出, 信号認識など, 自律運転におけるコンピュータビジョン応用の概要を概観する。
論文 参考訳(メタデータ) (2023-11-15T16:41:18Z) - On the Road with GPT-4V(ision): Early Explorations of Visual-Language
Model on Autonomous Driving [37.617793990547625]
本報告では,最新のVLMであるGPT-4Vの徹底的な評価を行う。
我々は、シーンを駆動し、決定を下し、最終的にはドライバーの能力で行動する、モデルを理解する能力について探求する。
GPT-4Vは,既存の自律システムと比較して,シーン理解や因果推論において優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-09T12:58:37Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - Data and Knowledge for Overtaking Scenarios in Autonomous Driving [0.0]
オーバーテイク・エクササイズは、運転において最も重要な行動の1つである。
文献で利用できる作業量にもかかわらず、ほんの少しの操作しか処理できない。
この研究は、この領域に寄与し、新たな合成データセットを提示する。
論文 参考訳(メタデータ) (2023-05-30T21:27:05Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。