Safe Road-Crossing by Autonomous Wheelchairs: a Novel Dataset and its Experimental Evaluation
- URL: http://arxiv.org/abs/2403.08984v1
- Date: Wed, 13 Mar 2024 22:19:06 GMT
- Title: Safe Road-Crossing by Autonomous Wheelchairs: a Novel Dataset and its Experimental Evaluation
- Authors: Carlo Grigioni, Franca Corradini, Alessandro Antonucci, Jérôme Guzzi, Francesco Flammini,
- Abstract summary: We introduce a multi-sensor fusion approach to support road-crossing decisions in a system composed by an autonomous wheelchair and a flying drone.
As a proof-of-concept, we provide an experimental evaluation in a laboratory environment, showing the advantages of using multiple sensors.
The work has been developed in the context of an European project named REXASI-PRO, which aims to develop trustworthy artificial intelligence for social navigation of people with reduced mobility.
- Score: 42.90509901417468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safe road-crossing by self-driving vehicles is a crucial problem to address in smart-cities. In this paper, we introduce a multi-sensor fusion approach to support road-crossing decisions in a system composed by an autonomous wheelchair and a flying drone featuring a robust sensory system made of diverse and redundant components. To that aim, we designed an analytical danger function based on explainable physical conditions evaluated by single sensors, including those using machine learning and artificial vision. As a proof-of-concept, we provide an experimental evaluation in a laboratory environment, showing the advantages of using multiple sensors, which can improve decision accuracy and effectively support safety assessment. We made the dataset available to the scientific community for further experimentation. The work has been developed in the context of an European project named REXASI-PRO, which aims to develop trustworthy artificial intelligence for social navigation of people with reduced mobility.
Related papers
- Pedestrian motion prediction evaluation for urban autonomous driving [0.0]
We analyze selected publications with provided open-source solutions to determine valuability of traditional motion prediction metrics.
This perspective should be valuable to any potential autonomous driving or robotics engineer looking for the real-world performance of the existing state-of-art pedestrian motion prediction problem.
arXiv Detail & Related papers (2024-10-22T10:06:50Z) - Experimental Evaluation of Road-Crossing Decisions by Autonomous Wheelchairs against Environmental Factors [42.90509901417468]
We focus on the fine-tuning of tracking performance and on its experimental evaluation against outdoor environmental factors.
We show that the approach can be adopted to evaluate video tracking and event detection robustness against outdoor environmental factors.
arXiv Detail & Related papers (2024-05-27T08:43:26Z) - Incorporating Explanations into Human-Machine Interfaces for Trust and Situation Awareness in Autonomous Vehicles [4.1636282808157254]
We study the role of explainable AI and human-machine interface jointly in building trust in vehicle autonomy.
We present a situation awareness framework for calibrating users' trust in self-driving behavior.
arXiv Detail & Related papers (2024-04-10T23:02:13Z) - Framework for Quality Evaluation of Smart Roadside Infrastructure
Sensors for Automated Driving Applications [2.0502751783060003]
We present a novel approach to perform detailed quality assessment for smart roadside infrastructure sensors.
Our framework is multimodal across different sensor types and is evaluated on the DAIR-V2X dataset.
arXiv Detail & Related papers (2023-04-16T10:21:07Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
It is of primary importance that the resulting decisions are robust to perturbations.
Adversarial perturbations are purposefully crafted alterations of the environment or of the sensory measurements.
A careful evaluation of the vulnerabilities of their sensing system(s) is necessary in order to build and deploy safer systems.
arXiv Detail & Related papers (2020-07-14T05:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.