論文の概要: Randomized Principal Component Analysis for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2403.09117v2
- Date: Wed, 5 Jun 2024 07:49:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 00:40:47.894367
- Title: Randomized Principal Component Analysis for Hyperspectral Image Classification
- Title(参考訳): ハイパースペクトル画像分類のためのランダム化主成分分析
- Authors: Mustafa Ustuner,
- Abstract要約: 2つのハイパースペクトルデータセットの分類において,特徴量を20と30に減らした。
最も高い分類精度は、LightGBMによって0.9925と0.9639と得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The high-dimensional feature space of the hyperspectral imagery poses major challenges to the processing and analysis of the hyperspectral data sets. In such a case, dimensionality reduction is necessary to decrease the computational complexity. The random projections open up new ways of dimensionality reduction, especially for large data sets. In this paper, the principal component analysis (PCA) and randomized principal component analysis (R-PCA) for the classification of hyperspectral images using support vector machines (SVM) and light gradient boosting machines (LightGBM) have been investigated. In this experimental research, the number of features was reduced to 20 and 30 for classification of two hyperspectral datasets (Indian Pines and Pavia University). The experimental results demonstrated that PCA outperformed R-PCA for SVM for both datasets, but received close accuracy values for LightGBM. The highest classification accuracies were obtained as 0.9925 and 0.9639 by LightGBM with original features for the Pavia University and Indian Pines, respectively.
- Abstract(参考訳): ハイパースペクトル画像の高次元特徴空間は、ハイパースペクトルデータセットの処理と解析に大きな課題をもたらす。
このような場合、計算複雑性を減少させるためには次元削減が必要である。
ランダムプロジェクションは、特に大きなデータセットに対して、次元の減少の新しい方法を開く。
本稿では, 支持ベクトルマシン (SVM) と光勾配ブースティングマシン (LightGBM) を用いたハイパースペクトル画像の分類のための主成分分析 (PCA) とランダム化主成分分析 (R-PCA) について検討した。
この実験では、2つの超スペクトルデータセット(インドパインズ大学とパヴィア大学)を分類するために、特徴の数は20と30に減らされた。
実験の結果、PCAは両方のデータセットでSVMのR-PCAよりも優れていたが、LightGBMでは精度が良くなった。
最も高い分類精度は、パヴィア大学とインド・パインズに固有の特徴を持つLightGBMによって0.9925と0.9639として得られた。
関連論文リスト
- Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - Supervised classification methods applied to airborne hyperspectral
images: Comparative study using mutual information [0.0]
本稿では,SVM,Random Forest RF,K-Nearest Neighbors KNN,Linear Discriminant Analysis LDAの4つの教師付き学習アルゴリズムの性能について検討する。
実験は、NASAの空中可視/赤外線イメージング分光計センサーAVIRISと反射光学系イメージング分光計ROSISセンサーから得られた3つの実際のハイパースペクトルデータセットで実施された。
論文 参考訳(メタデータ) (2022-10-27T13:39:08Z) - New wrapper method based on normalized mutual information for dimension
reduction and classification of hyperspectral images [0.0]
正規化相互情報(NMI)と誤り確率(PE)に基づく新しいラッパー手法を提案する。
NASAのAVIRIS(Airborne Visible/Infrared Imaging Spectrometer Sensor)が捉えた、2つの挑戦的なハイパースペクトルベンチマークデータセットで実験が行われた。
論文 参考訳(メタデータ) (2022-10-25T21:17:11Z) - Optimal Discriminant Analysis in High-Dimensional Latent Factor Models [1.4213973379473654]
高次元分類問題において、一般的に用いられるアプローチは、まず高次元の特徴を低次元空間に射影することである。
我々は、この2段階の手順を正当化するために、隠れた低次元構造を持つ潜在変数モデルを定式化する。
観測された特徴の特定の主成分(PC)を射影とする計算効率の良い分類器を提案する。
論文 参考訳(メタデータ) (2022-10-23T21:45:53Z) - HyperPCA: a Powerful Tool to Extract Elemental Maps from Noisy Data
Obtained in LIBS Mapping of Materials [7.648784748888189]
本稿では,データのスパース表現に基づくハイパースペクトル画像解析ツールHyperPCAを紹介する。
本手法は, 得られた情報量と品質の両面での優位性を示し, 解析面の物理化学的特性の改善を図っている。
論文 参考訳(メタデータ) (2021-11-30T07:52:44Z) - Class-Wise Principal Component Analysis for hyperspectral image feature
extraction [0.0]
本稿では,超スペクトルデータの教師付き特徴抽出法であるクラスワイズ主成分分析について述べる。
次元削減は超スペクトル画像分類タスクを補完する重要な前処理ステップである。
論文 参考訳(メタデータ) (2021-04-09T17:25:11Z) - Enhanced Principal Component Analysis under A Collaborative-Robust
Framework [89.28334359066258]
重み学習とロバストな損失を非自明な方法で組み合わせる,一般的な協調ロバスト重み学習フレームワークを提案する。
提案されたフレームワークでは、トレーニング中の重要度を示す適切なサンプルの一部のみがアクティブになり、エラーが大きい他のサンプルは無視されません。
特に、不活性化試料の負の効果はロバスト損失関数によって軽減される。
論文 参考訳(メタデータ) (2021-03-22T15:17:37Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral
Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction [48.73525876467408]
本稿では,超スペクトル部分空間解析のための新しい手法を提案する。
この手法はジョイント・アンド・プログレッシブ・サブスペース分析(JPSA)と呼ばれる。
2つの広帯域超スペクトルデータセットに対して提案したJPSAの優位性と有効性を示す実験を行った。
論文 参考訳(メタデータ) (2020-09-21T16:29:59Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。