MetroGNN: Metro Network Expansion with Reinforcement Learning
- URL: http://arxiv.org/abs/2403.09197v1
- Date: Thu, 14 Mar 2024 09:09:15 GMT
- Title: MetroGNN: Metro Network Expansion with Reinforcement Learning
- Authors: Hongyuan Su, Yu Zheng, Jingtao Ding, Depeng Jin, Yong Li,
- Abstract summary: We introduce a reinforcement learning framework to address a Markov decision process within an urban heterogeneous multi-graph.
Our approach employs an attentive policy network that intelligently selects nodes based on information captured by a graph neural network.
- Score: 29.418145526587313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Selecting urban regions for metro network expansion to meet maximal transportation demands is crucial for urban development, while computationally challenging to solve. The expansion process relies not only on complicated features like urban demographics and origin-destination (OD) flow but is also constrained by the existing metro network and urban geography. In this paper, we introduce a reinforcement learning framework to address a Markov decision process within an urban heterogeneous multi-graph. Our approach employs an attentive policy network that intelligently selects nodes based on information captured by a graph neural network. Experiments on real-world urban data demonstrate that our proposed methodology substantially improve the satisfied transportation demands by over 30\% when compared with state-of-the-art methods. Codes are published at https://github.com/tsinghua-fib-lab/MetroGNN.
Related papers
- Explainable Hierarchical Urban Representation Learning for Commuting Flow Prediction [1.5156879440024378]
Commuting flow prediction is an essential task for municipal operations in the real world.
We develop a heterogeneous graph-based model to generate meaningful region embeddings for predicting different types of inter-level OD flows.
Our proposed model outperforms existing models in terms of a uniform urban structure.
arXiv Detail & Related papers (2024-08-27T03:30:01Z) - Advanced Artificial Intelligence Strategy for Optimizing Urban Rail Network Design using Nature-Inspired Algorithms [0.0]
This study introduces an innovative methodology for the planning of metro network routes within the urban environment of Chennai, Tamil Nadu, India.
A comparative analysis of the modified Ant Colony Optimization (ACO) method with recent breakthroughs in nature-inspired algorithms demonstrates the modified ACO's superiority over modern techniques.
arXiv Detail & Related papers (2024-07-04T17:57:39Z) - Cross-City Matters: A Multimodal Remote Sensing Benchmark Dataset for
Cross-City Semantic Segmentation using High-Resolution Domain Adaptation
Networks [82.82866901799565]
We build a new set of multimodal remote sensing benchmark datasets (including hyperspectral, multispectral, SAR) for the study purpose of the cross-city semantic segmentation task.
Beyond the single city, we propose a high-resolution domain adaptation network, HighDAN, to promote the AI model's generalization ability from the multi-city environments.
HighDAN is capable of retaining the spatially topological structure of the studied urban scene well in a parallel high-to-low resolution fusion fashion.
arXiv Detail & Related papers (2023-09-26T23:55:39Z) - Complexity-aware Large Scale Origin-Destination Network Generation via
Diffusion Model [24.582615553841396]
Origin-Destination(OD) networks provide an estimation of the flow of people from every region to others in the city.
We propose to generate the OD network, and design a graph denoising diffusion method to learn the conditional joint probability distribution of the nodes and edges.
arXiv Detail & Related papers (2023-06-08T02:02:55Z) - MetroGAN: Simulating Urban Morphology with Generative Adversarial
Network [10.504296192020497]
We propose a GAN framework with geographical knowledge, namely Metropolitan GAN (MetroGAN) for urban morphology simulation.
Results show that MetroGAN outperforms the state-of-the-art urban simulation methods by over 20% in all metrics.
arXiv Detail & Related papers (2022-07-06T11:02:24Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
Cross-city knowledge has shown its promise, where the model learned from data-sufficient cities is leveraged to benefit the learning process of data-scarce cities.
We propose a model-agnostic few-shot learning framework for S-temporal graph called ST-GFSL.
We conduct comprehensive experiments on four traffic speed prediction benchmarks and the results demonstrate the effectiveness of ST-GFSL compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-05-27T12:46:52Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - CityNet: A Comprehensive Multi-Modal Urban Dataset for Advanced Research in Urban Computing [1.9774168196078137]
We present CityNet, a multi-modal urban dataset that incorporates various data from seven cities.
We conduct extensive data mining and machine learning experiments to facilitate the use of CityNet.
arXiv Detail & Related papers (2021-06-30T04:05:51Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Physical-Virtual Collaboration Modeling for Intra-and Inter-Station
Metro Ridership Prediction [116.66657468425645]
We propose a unified Physical-Virtual Collaboration Graph Network (PVCGN), which can effectively learn the complex ridership patterns from the tailor-designed graphs.
Specifically, a physical graph is directly built based on the realistic topology of the studied metro system.
A similarity graph and a correlation graph are built with virtual topologies under the guidance of the inter-station passenger flow similarity and correlation.
arXiv Detail & Related papers (2020-01-14T16:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.