Advanced Artificial Intelligence Strategy for Optimizing Urban Rail Network Design using Nature-Inspired Algorithms
- URL: http://arxiv.org/abs/2407.04087v1
- Date: Thu, 4 Jul 2024 17:57:39 GMT
- Title: Advanced Artificial Intelligence Strategy for Optimizing Urban Rail Network Design using Nature-Inspired Algorithms
- Authors: Hariram Sampath Kumar, Archana Singh, Manish Kumar Ojha,
- Abstract summary: This study introduces an innovative methodology for the planning of metro network routes within the urban environment of Chennai, Tamil Nadu, India.
A comparative analysis of the modified Ant Colony Optimization (ACO) method with recent breakthroughs in nature-inspired algorithms demonstrates the modified ACO's superiority over modern techniques.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study introduces an innovative methodology for the planning of metro network routes within the urban environment of Chennai, Tamil Nadu, India. A comparative analysis of the modified Ant Colony Optimization (ACO) method (previously developed) with recent breakthroughs in nature-inspired algorithms demonstrates the modified ACO's superiority over modern techniques. By utilizing the modified ACO algorithm, the most efficient routes connecting the origin and destination of the metro route are generated. Additionally, the model is applied to the existing metro network to highlight variations between the model's results and the current network. The Google Maps platform, integrated with Python, handles real-time data, including land utilization, Geographical Information Systems (GIS) data, census information, and points of interest. This processing enables the identification of stops within the city and along the chosen routes. The resulting metro network showcases substantial benefits compared to conventional route planning methods, with noteworthy enhancements in workforce productivity, decreased planning time, and cost-efficiency. This study significantly enhances the efficiency of urban transport systems, specifically in rapidly changing metropolitan settings such as chennai.
Related papers
- Deep Heuristic Learning for Real-Time Urban Pathfinding [0.0]
This paper introduces a novel approach to urban pathfinding by transforming traditional algorithms into deep learning models that leverage real-time contextual data, such as traffic and weather conditions.
We propose two methods: an enhanced A* algorithm that dynamically adjusts routes based on current environmental conditions, and a neural network model that predicts the next optimal path segment using historical and live data.
arXiv Detail & Related papers (2024-11-07T00:22:04Z) - A Predictive and Optimization Approach for Enhanced Urban Mobility Using Spatiotemporal Data [0.0]
This study introduces a novel method for enhancing urban mobility by combining machine learning algorithms with live traffic information.
We developed predictive models for journey time and congestion analysis using data from New York City's yellow taxi trips.
This research contributes to ongoing efforts aimed at reducing urban congestion and improving transportation efficiency through advanced data-driven methods.
arXiv Detail & Related papers (2024-10-07T16:16:49Z) - MetroGNN: Metro Network Expansion with Reinforcement Learning [29.418145526587313]
We introduce a reinforcement learning framework to address a Markov decision process within an urban heterogeneous multi-graph.
Our approach employs an attentive policy network that intelligently selects nodes based on information captured by a graph neural network.
arXiv Detail & Related papers (2024-03-14T09:09:15Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
We invoke deep learning (DL) to assist routing in aeronautical ad-hoc networks (AANETs)
A deep neural network (DNN) is conceived for mapping the local geographic information observed by the forwarding node into the information required for determining the optimal next hop.
We extend the DL-aided routing algorithm to a multi-objective scenario, where we aim for simultaneously minimizing the delay, maximizing the path capacity, and maximizing the path lifetime.
arXiv Detail & Related papers (2021-10-28T14:18:22Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
We propose a deep reinforcement learning based solution for order dispatching.
We conduct large scale online A/B tests on DiDi's ride-dispatching platform.
Results show that CVNet consistently outperforms other recently proposed dispatching methods.
arXiv Detail & Related papers (2021-06-08T16:27:04Z) - TLab: Traffic Map Movie Forecasting Based on HR-NET [23.40323690536007]
In our solution, hand-crafted features are input into the model in a form of channels.
In terms of prediction accuracy, our solution has won 2nd place in NeurIPS 2020, Traffic4cast Challenge.
arXiv Detail & Related papers (2020-11-13T18:48:13Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations.
A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building.
arXiv Detail & Related papers (2020-04-25T22:54:35Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.