論文の概要: Uncertainty Quantification for cross-subject Motor Imagery classification
- arxiv url: http://arxiv.org/abs/2403.09228v1
- Date: Thu, 14 Mar 2024 09:48:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 21:07:03.484815
- Title: Uncertainty Quantification for cross-subject Motor Imagery classification
- Title(参考訳): クロスオブジェクトモータ画像分類における不確かさの定量化
- Authors: Prithviraj Manivannan, Ivo Pascal de Jong, Matias Valdenegro-Toro, Andreea Ioana Sburlea,
- Abstract要約: 不確実性定量化は、機械学習モデルがいつ間違っているかを決定することを目的としている。
ディープアンサンブルは、分類性能とクロスオブジェクト不確かさ定量化性能の両方において、最高の性能を示した。
ソフトマックス出力の標準CNNは、より先進的な手法よりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 5.62479170374811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty Quantification aims to determine when the prediction from a Machine Learning model is likely to be wrong. Computer Vision research has explored methods for determining epistemic uncertainty (also known as model uncertainty), which should correspond with generalisation error. These methods theoretically allow to predict misclassifications due to inter-subject variability. We applied a variety of Uncertainty Quantification methods to predict misclassifications for a Motor Imagery Brain Computer Interface. Deep Ensembles performed best, both in terms of classification performance and cross-subject Uncertainty Quantification performance. However, we found that standard CNNs with Softmax output performed better than some of the more advanced methods.
- Abstract(参考訳): 不確実性定量化は、機械学習モデルからの予測が間違っている可能性があるかどうかを判断することを目的としている。
コンピュータビジョン研究は、一般化誤差に対応するてんかん不確実性(モデル不確実性とも呼ばれる)を決定する方法を模索してきた。
これらの手法は理論的には、オブジェクト間の変動による誤分類を予測できる。
我々は、モータ画像脳コンピュータインタフェースの誤分類を予測するために、様々な不確かさ定量化手法を適用した。
ディープアンサンブルは、分類性能とクロスオブジェクト不確かさ定量化性能の両方において、最高の性能を示した。
しかし、Softmax出力の標準CNNは、より先進的な手法よりも優れた性能を示した。
関連論文リスト
- Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
本稿では,誤用と関連するリスクを軽減するために,予測不確実性を利用してAI生成画像を検出する新しい手法を提案する。
この動機は、自然画像とAI生成画像の分布差に関する基本的な仮定から生じる。
本稿では,AI生成画像の検出スコアとして,大規模事前学習モデルを用いて不確実性を計算することを提案する。
論文 参考訳(メタデータ) (2024-12-08T11:32:25Z) - Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
提案モデルでは,不確かさ予測を正規化し,予測と不確かさ推定の両方を計算する訓練を行う。
複数ビュー予測と不確かさと信頼度を考慮し、最終的な予測を計算する方法をいくつか提案した。
提案手法はクリーンでノイズの多いラベル付きCIFAR-10データセットを用いて検証した。
論文 参考訳(メタデータ) (2024-04-16T06:40:51Z) - A Data-Driven Measure of Relative Uncertainty for Misclassification
Detection [25.947610541430013]
誤分類検出のための観測者に対して,不確実性に関するデータ駆動測度を導入する。
ソフト予測の分布パターンを学習することにより,不確実性を測定することができる。
複数の画像分類タスクに対する経験的改善を示し、最先端の誤分類検出方法より優れていることを示す。
論文 参考訳(メタデータ) (2023-06-02T17:32:03Z) - Calibrating Ensembles for Scalable Uncertainty Quantification in Deep
Learning-based Medical Segmentation [0.42008820076301906]
自動画像解析における不確かさの定量化は、多くのアプリケーションで非常に望まれている。
現在の不確実性定量化アプローチは、高次元実世界の問題ではうまくスケールしない。
本研究では,ディープラーニングモデルのアンサンブルを校正し,不確実な定量化測定を行うための,スケーラブルで直感的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T09:09:48Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - An Uncertainty Estimation Framework for Probabilistic Object Detection [5.83620245905973]
本稿では,物体検出における不確実性を推定する2つの一般的な手法を組み合わせた新しい手法を提案する。
我々のフレームワークは、予測の不確実性を近似するために、深いアンサンブルとモンテカルロのドロップアウトを利用する。
論文 参考訳(メタデータ) (2021-06-28T22:29:59Z) - Accounting for Model Uncertainty in Algorithmic Discrimination [16.654676310264705]
フェアネスアプローチは、モデルの不確実性に起因するエラーの均等化にのみ焦点をあてるべきである。
予測多重性とモデル不確実性の間に関係をもち、予測多重性からの手法がモデル不確実性に起因するエラーの特定に使用できると主張する。
論文 参考訳(メタデータ) (2021-05-10T10:34:12Z) - Uncertainty-Aware Few-Shot Image Classification [118.72423376789062]
ラベル付き限られたデータから新しいカテゴリを認識できる画像分類はほとんどない。
画像分類のための不確実性を考慮したFew-Shotフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-09T12:26:27Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
我々は、モデル損失関数の影響関数を利用して、予測信頼区間のジャックニフェ(または、アウト・ワン・アウト)推定器を構築する頻繁な手順を開発する。
1)および(2)を満たすDJは、幅広いディープラーニングモデルに適用可能であり、実装が容易であり、モデルトレーニングに干渉したり、精度を妥協したりすることなく、ポストホックな方法で適用することができる。
論文 参考訳(メタデータ) (2020-06-29T13:36:52Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。