REPQC: Reverse Engineering and Backdooring Hardware Accelerators for Post-quantum Cryptography
- URL: http://arxiv.org/abs/2403.09352v1
- Date: Thu, 14 Mar 2024 12:57:59 GMT
- Title: REPQC: Reverse Engineering and Backdooring Hardware Accelerators for Post-quantum Cryptography
- Authors: Samuel Pagliarini, Aikata Aikata, Malik Imran, Sujoy Sinha Roy,
- Abstract summary: We show that PQC hardware accelerators can be backdoored by two different adversaries located in the chip supply chain.
We propose REPQC, a sophisticated reverse engineering algorithm that can be employed to confidently identify hashing operations.
An adversary proceeds to insert malicious logic in the form of a stealthy Hardware Trojan Horse (HTH)
- Score: 5.458904989691539
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Significant research efforts have been dedicated to designing cryptographic algorithms that are quantum-resistant. The motivation is clear: robust quantum computers, once available, will render current cryptographic standards vulnerable. Thus, we need new Post-Quantum Cryptography (PQC) algorithms, and, due to the inherent complexity of such algorithms, there is also a demand to accelerate them in hardware. In this paper, we show that PQC hardware accelerators can be backdoored by two different adversaries located in the chip supply chain. We propose REPQC, a sophisticated reverse engineering algorithm that can be employed to confidently identify hashing operations (i.e., Keccak) within the PQC accelerator - the location of which serves as an anchor for finding secret information to be leaked. Armed with REPQC, an adversary proceeds to insert malicious logic in the form of a stealthy Hardware Trojan Horse (HTH). Using Dilithium as a study case, our results demonstrate that HTHs that increase the accelerator's layout density by as little as 0.1\% can be inserted without any impact on the performance of the circuit and with a marginal increase in power consumption. An essential aspect is that the entire reverse engineering in REPQC is automated, and so is the HTH insertion that follows it, empowering adversaries to explore multiple HTH designs and identify the most suitable one.
Related papers
- Watermarking of Quantum Circuits [2.348041867134616]
Quantum circuits constitute Intellectual Property (IP) of the quantum developers and users.
We present two such lightweight watermarking techniques to prove ownership in the event of an adversary cloning the circuit design.
arXiv Detail & Related papers (2024-09-02T22:37:47Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Quantum of QUIC: Dissecting Cryptography with Post-Quantum Insights [2.522402937703098]
QUIC is a new network protocol standardized in 2021.
It was designed to replace the TCP/TLS stack and is based on UDP.
This paper presents a detailed evaluation of the impact of cryptography on QUIC performance.
arXiv Detail & Related papers (2024-05-15T11:27:28Z) - Post-Quantum Cryptography for Internet of Things: A Survey on Performance and Optimization [5.2804058417428275]
Post-quantum encryption and signatures can be hard to compute.
PQC may be feasible for reasonably lightweight IoT, but proposals for their optimization seem to lack standardization.
We suggest future research to seek coordination, in order to ensure an efficient and safe migration toward IoT for the post-quantum era.
arXiv Detail & Related papers (2024-01-31T01:47:04Z) - Designing Hash and Encryption Engines using Quantum Computing [2.348041867134616]
We explore quantum-based hash functions and encryption to fortify data security.
The integration of quantum and classical methods demonstrates potential in securing data in the era of quantum computing.
arXiv Detail & Related papers (2023-10-26T14:49:51Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Near Threshold Computation of Partitioned Ring Learning With Error (RLWE) Post Quantum Cryptography on Reconfigurable Architecture [0.8793721044482612]
Ring Learning With Error (RLWE) algorithm is used in Post Quantum Cryptography (PQC) and Homomorphic Encryption (HE) algorithm.
In this paper, we have implemented RLWE hardware accelerator which has 14 subcomponents.
This voltage scaled, partitioned RLWE can save 6% and 11% power in Vivado and VTR platform respectively.
arXiv Detail & Related papers (2022-08-17T06:08:54Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.