論文の概要: ConDiSR: Contrastive Disentanglement and Style Regularization for Single Domain Generalization
- arxiv url: http://arxiv.org/abs/2403.09400v3
- Date: Thu, 31 Oct 2024 09:21:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:57:40.943837
- Title: ConDiSR: Contrastive Disentanglement and Style Regularization for Single Domain Generalization
- Title(参考訳): ConDiSR: Contrastive Disentanglement and Style Regularization for Single Domain Generalization
- Authors: Aleksandr Matsun, Numan Saeed, Fadillah Adamsyah Maani, Mohammad Yaqub,
- Abstract要約: 医療データは、しばしば分散シフトを示し、標準パイプラインを使用してトレーニングされたディープラーニングモデルのテスト時のパフォーマンス劣化を引き起こす。
本研究は、分類タスクの文脈において、単一ドメインの一般化フレームワークを探索することの重要性と課題を強調した。
- 参考スコア(独自算出の注目度): 42.810247034149214
- License:
- Abstract: Medical data often exhibits distribution shifts, which cause test-time performance degradation for deep learning models trained using standard supervised learning pipelines. This challenge is addressed in the field of Domain Generalization (DG) with the sub-field of Single Domain Generalization (SDG) being specifically interesting due to the privacy- or logistics-related issues often associated with medical data. Existing disentanglement-based SDG methods heavily rely on structural information embedded in segmentation masks, however classification labels do not provide such dense information. This work introduces a novel SDG method aimed at medical image classification that leverages channel-wise contrastive disentanglement. It is further enhanced with reconstruction-based style regularization to ensure extraction of distinct style and structure feature representations. We evaluate our method on the complex task of multicenter histopathology image classification, comparing it against state-of-the-art (SOTA) SDG baselines. Results demonstrate that our method surpasses the SOTA by a margin of 1% in average accuracy while also showing more stable performance. This study highlights the importance and challenges of exploring SDG frameworks in the context of the classification task. The code is publicly available at https://github.com/BioMedIA-MBZUAI/ConDiSR
- Abstract(参考訳): 医療データは、しばしば分散シフトを示し、標準的な教師付き学習パイプラインを使用してトレーニングされたディープラーニングモデルのテスト時のパフォーマンス劣化を引き起こす。
この課題は、単一ドメイン一般化(SDG)のサブフィールドであるドメイン一般化(DG)の分野で解決されている。
既存のアンタングルメントベースのSDG法は、セグメンテーションマスクに埋め込まれた構造情報に大きく依存しているが、分類ラベルはそのような密集した情報を提供していない。
本研究は,チャネルワイドのコントラスト的絡み合いを利用した医用画像分類のための新しいSDG手法を提案する。
さらに、異なるスタイルと構造的特徴表現の抽出を保証するために、再構築ベースのスタイル正規化によって強化されている。
本手法は多心組織像分類の複雑な課題について検討し,SOTA (State-of-the-art) SDGベースラインと比較した。
以上の結果から,本手法は平均精度1%の誤差でSOTAを上回り,より安定した性能を示した。
本研究は,分類タスクの文脈におけるSDGフレームワークの探索の重要性と課題を明らかにする。
コードはhttps://github.com/BioMedIA-MBzuAI/ConDiSRで公開されている。
関連論文リスト
- RaffeSDG: Random Frequency Filtering enabled Single-source Domain Generalization for Medical Image Segmentation [41.50001361938865]
ディープラーニングモデルは、ソースとターゲットデータの間にドメインシフトがある場合、正確な推論を行う際の課題に直面することが多い。
単一ソース領域一般化アルゴリズム(RaffeSDG)を提案する。
RaffeSDGは、単一ソースドメインでトレーニングされたセグメンテーションモデルで、堅牢なドメイン外推論を約束する。
論文 参考訳(メタデータ) (2024-05-02T12:13:00Z) - Continual atlas-based segmentation of prostate MRI [2.17257168063257]
自然な画像分類のために設計された連続学習(CL)法は、しばしば基本的な品質基準に達しない。
我々は,プロトタイプを用いて高品質なセグメンテーションマスクを生成するアトラスベースのセグメンテーション手法であるAtlas Replayを提案する。
我々の結果は、Atlas Replayは堅牢であり、知識を維持しながら、まだ見つからない領域に対してうまく一般化していることを示している。
論文 参考訳(メタデータ) (2023-11-01T14:29:46Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
カテゴリーシフト(DGCS)下における領域一般化の実践的問題について検討する。
未知のクラスサンプルを同時に検出し、ターゲットドメイン内の既知のクラスサンプルを分類することを目的としている。
従来のDGと比較すると,1)ソースクラスのみを用いたトレーニングにおいて,未知の概念を学習する方法,2)ソーストレーニングされたモデルを未知の環境に適応する方法,の2つの新しい課題に直面している。
論文 参考訳(メタデータ) (2023-10-07T07:53:12Z) - The Whole Pathological Slide Classification via Weakly Supervised
Learning [7.313528558452559]
細胞核疾患と病理タイルの空間的相関の2つの病因を考察した。
本研究では,抽出器訓練中の汚れ分離を利用したデータ拡張手法を提案する。
次に,隣接行列を用いてタイル間の空間的関係を記述する。
これら2つのビューを統合することで,H&E染色組織像を解析するためのマルチインスタンス・フレームワークを設計した。
論文 参考訳(メタデータ) (2023-07-12T16:14:23Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Semi-Supervised Semantic Segmentation of Vessel Images using Leaking
Perturbations [1.5791732557395552]
Leaking GANは、網膜血管セグメンテーションのためのGANベースの半教師付きアーキテクチャである。
私たちのキーとなるアイデアは、ジェネレータから情報を漏らすことで識別器を汚染することです。
これにより、より穏健な世代がGANのトレーニングに役立ちます。
論文 参考訳(メタデータ) (2021-10-22T18:25:08Z) - Consistent Posterior Distributions under Vessel-Mixing: A Regularization
for Cross-Domain Retinal Artery/Vein Classification [30.30848090813239]
網膜A/V分類におけるクロスドメイン学習のための船舶混合型整合性正規化フレームワークを提案する。
提案手法は,対象ドメインに対する教師付き学習によって得られる上界に近い,最先端のクロスドメイン性能を実現する。
論文 参考訳(メタデータ) (2021-03-16T14:18:35Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
クロスモーダル医療画像セグメンテーションのための自己ペースコントラスト学習モデルを保存する新しいマージンを提案する。
プログレッシブに洗練されたセマンティックプロトタイプの指導により、埋め込み表現空間の識別性を高めるために、コントラスト損失を減少させる新しいマージンが提案される。
クロスモーダル心セグメンテーションタスクの実験は、MPSCLが意味セグメンテーション性能を大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-03-15T15:23:10Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。