On using Machine Learning Algorithms for Motorcycle Collision Detection
- URL: http://arxiv.org/abs/2403.09491v1
- Date: Thu, 14 Mar 2024 15:32:25 GMT
- Title: On using Machine Learning Algorithms for Motorcycle Collision Detection
- Authors: Philipp Rodegast, Steffen Maier, Jonas Kneifl, Jörg Fehr,
- Abstract summary: Impact simulations show that the risk of severe injury or death in the event of a motorcycle-to-car impact can be greatly reduced if the motorcycle is equipped with passive safety measures such as airbags and seat belts.
For the challenge of reliably detecting impending collisions, this paper presents an investigation towards the applicability of machine learning algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Globally, motorcycles attract vast and varied users. However, since the rate of severe injury and fatality in motorcycle accidents far exceeds passenger car accidents, efforts have been directed toward increasing passive safety systems. Impact simulations show that the risk of severe injury or death in the event of a motorcycle-to-car impact can be greatly reduced if the motorcycle is equipped with passive safety measures such as airbags and seat belts. For the passive safety systems to be activated, a collision must be detected within milliseconds for a wide variety of impact configurations, but under no circumstances may it be falsely triggered. For the challenge of reliably detecting impending collisions, this paper presents an investigation towards the applicability of machine learning algorithms. First, a series of simulations of accidents and driving operation is introduced to collect data to train machine learning classification models. Their performance is henceforth assessed and compared via multiple representative and application-oriented criteria.
Related papers
- RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - Deep Reinforcement Learning for Advanced Longitudinal Control and Collision Avoidance in High-Risk Driving Scenarios [0.0]
This study introduces a novel deep reinforcement learning based algorithm for longitudinal control and collision avoidance.
Its implementation in simulated high risk scenarios, which involve emergency braking in dense traffic where traditional systems typically fail, has demonstrated the algorithm ability to prevent potential pile up collisions.
arXiv Detail & Related papers (2024-04-29T19:58:34Z) - Context-Aware Quantitative Risk Assessment Machine Learning Model for
Drivers Distraction [0.0]
Multi-Class Driver Distraction Risk Assessment (MDDRA) model considers the vehicle, driver, and environmental data during a journey.
MDDRA categorises the driver on a risk matrix as safe, careless, or dangerous.
We apply machine learning techniques to classify and predict driver distraction according to severity levels.
arXiv Detail & Related papers (2024-02-20T23:20:36Z) - CAT: Closed-loop Adversarial Training for Safe End-to-End Driving [54.60865656161679]
Adversarial Training (CAT) is a framework for safe end-to-end driving in autonomous vehicles.
Cat aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios.
Cat can effectively generate adversarial scenarios countering the agent being trained.
arXiv Detail & Related papers (2023-10-19T02:49:31Z) - Infrastructure-based End-to-End Learning and Prevention of Driver
Failure [68.0478623315416]
FailureNet is a recurrent neural network trained end-to-end on trajectories of both nominal and reckless drivers in a scaled miniature city.
It can accurately identify control failures, upstream perception errors, and speeding drivers, distinguishing them from nominal driving.
Compared to speed or frequency-based predictors, FailureNet's recurrent neural network structure provides improved predictive power, yielding upwards of 84% accuracy when deployed on hardware.
arXiv Detail & Related papers (2023-03-21T22:55:51Z) - Detecting, Tracking and Counting Motorcycle Rider Traffic Violations on
Unconstrained Roads [27.351236436457445]
In many Asian countries with unconstrained road traffic conditions, driving violations such as not wearing helmets and triple-riding are a significant source of fatalities involving motorcycles.
We propose an approach for detecting, tracking, and counting motorcycle riding violations in videos taken from a vehicle-mounted dashboard camera.
arXiv Detail & Related papers (2022-04-18T15:17:40Z) - An NCAP-like Safety Indicator for Self-Driving Cars [2.741266294612776]
This paper proposes a mechanism to assess the safety of autonomous cars.
It assesses the car's safety in scenarios where the car must avoid collision with an adversary.
The safety measure, called Safe-Kamikaze Distance, computes the average similarity between sets of safe adversary's trajectories and kamikaze trajectories close to the safe trajectories.
arXiv Detail & Related papers (2021-04-02T02:39:53Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
We address the fundamental problem of data scarcity in road traffic accident prediction by training our model on emergency braking events instead of accidents.
We present a prototype implementing a traffic incident prediction model for Germany based on emergency braking data from Mercedes-Benz vehicles.
arXiv Detail & Related papers (2021-02-12T18:17:12Z) - Computer Vision based Accident Detection for Autonomous Vehicles [0.0]
We propose a novel support system for self-driving cars that detects vehicular accidents through a dashboard camera.
The framework has been tested on a custom dataset of dashcam footage and achieves a high accident detection rate while maintaining a low false alarm rate.
arXiv Detail & Related papers (2020-12-20T08:51:10Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.