論文の概要: WeakSurg: Weakly supervised surgical instrument segmentation using temporal equivariance and semantic continuity
- arxiv url: http://arxiv.org/abs/2403.09551v2
- Date: Mon, 30 Sep 2024 07:46:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:59:43.968087
- Title: WeakSurg: Weakly supervised surgical instrument segmentation using temporal equivariance and semantic continuity
- Title(参考訳): WeakSurg : 時間的等比と意味的連続性を用いた弱監督型手術器具セグメンテーション
- Authors: Qiyuan Wang, Yanzhe Liu, Shang Zhao, Rong Liu, S. Kevin Zhou,
- Abstract要約: 本稿では,楽器の有無ラベルのみを付与した手術器具セグメンテーションを提案する。
手術ビデオの時間的特性を考慮し,2段階の弱教師付きセグメンテーションパラダイムを拡張した。
1つの胆嚢摘出手術ベンチマークと1つの実際のロボット左外側肝外科手術データセットを含む2つの手術ビデオデータセットで実験が検証されている。
- 参考スコア(独自算出の注目度): 14.448593791011204
- License:
- Abstract: For robotic surgical videos, instrument presence annotations are typically recorded with video streams, which offering the potential to reduce the manually annotated costs for segmentation. However, weakly supervised surgical instrument segmentation with only instrument presence labels has been rarely explored in surgical domain due to the highly under-constrained challenges. Temporal properties can enhance representation learning by capturing sequential dependencies and patterns over time even in incomplete supervision situations. From this, we take the inherent temporal attributes of surgical video into account and extend a two-stage weakly supervised segmentation paradigm from different perspectives. Firstly, we make temporal equivariance constraint to enhance pixel-wise temporal consistency between adjacent features. Secondly, we constrain class-aware semantic continuity between global and local regions across temporal dimension. Finally, we generate temporal-enhanced pseudo masks from consecutive frames to suppress irrelevant regions. Extensive experiments are validated on two surgical video datasets, including one cholecystectomy surgery benchmark and one real robotic left lateral segment liver surgery dataset. We annotate instance-wise instrument labels with fixed time-steps which are double checked by a clinician with 3-years experience to evaluate segmentation results. Experimental results demonstrate the promising performances of our method, which consistently achieves comparable or favorable results with previous state-of-the-art approaches.
- Abstract(参考訳): ロボットの手術ビデオの場合、楽器の存在アノテーションは典型的にビデオストリームで記録されるため、セグメンテーションのための手作業による注釈付きコストを削減できる。
しかし, 極めて制約の少ない手術領域では, 楽器ラベルのみを用いた手術器具のセグメンテーションがほとんど行われていない。
時間的特性は、不完全な監督状況であっても、連続的な依存関係やパターンを時間とともにキャプチャすることで、表現学習を強化することができる。
そこで我々は,手術ビデオの時間的特性を考慮に入れ,異なる視点から2段階の弱教師付きセグメンテーションパラダイムを拡張した。
まず,隣接した特徴間の画素方向の時間的整合性を高めるために時間的等角性制約を行う。
第2に,時間的次元を越えたグローバル領域とローカル領域間のクラス認識のセマンティック連続性を制約する。
最後に、連続するフレームから時間的強調仮面を生成し、無関係な領域を抑える。
1つの胆嚢摘出術のベンチマークと1つの実際のロボット左外側肝外科のデータセットを含む2つの手術ビデオデータセットで、広範囲な実験が検証されている。
本研究は,3年間の経験を持つ臨床医が2回検査し,セグメンテーション結果を評価する,固定時間ステップのインスタンスワイド・インスツルメンツ・ラベルをアノテートする。
実験により提案手法の有望な性能を実証し, 従来手法と同等あるいは好意的な結果が得られることを示した。
関連論文リスト
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - SLoRD: Structural Low-Rank Descriptors for Shape Consistency in Vertebrae Segmentation [13.225110742269543]
我々は,CT画像から脊椎を自動的に正確に分割するための輪郭型ネットワークを提案する。
具体的には、SLoRDと呼ばれる形状整合性のための構造的低ランク記述子に基づく輪郭型ネットワークを提案する。
輪郭記述子をより正確に表現するために、球面座標系を採用し、球面セントロイドを考案する。
論文 参考訳(メタデータ) (2024-07-11T14:39:54Z) - PWISeg: Point-based Weakly-supervised Instance Segmentation for Surgical
Instruments [27.89003436883652]
我々はPWISeg (Point-based Weakly-supervised Instance) という,弱制御型手術器具セグメンテーション手法を提案する。
PWISegは、特徴点とバウンディングボックスの関係をモデル化するために、ポイント・ツー・ボックスとポイント・ツー・マスクのブランチを備えたFCNベースのアーキテクチャを採用している。
そこで本研究では,キー・ツー・マスク・ブランチを駆動し,より正確なセグメンテーション予測を生成するキー・ピクセル・アソシエーション・ロスとキー・ピクセル・アソシエーション・ロスを提案する。
論文 参考訳(メタデータ) (2023-11-16T11:48:29Z) - DIR-AS: Decoupling Individual Identification and Temporal Reasoning for
Action Segmentation [84.78383981697377]
完全な教師付きアクションセグメンテーションは、高密度アノテーションによるフレームワイドアクション認識に作用し、しばしば過剰なセグメンテーションの問題に悩まされる。
本研究では, 時間的ピラミッド拡張と時間的ピラミッドプールを併用して, 効率的なマルチスケールアテンションを実現するため, 新たなローカル・グローバルアテンション機構を開発した。
GTEAでは82.8%(+2.6%)、Breakfastでは74.7%(+1.2%)の精度を実現し,本手法の有効性を示した。
論文 参考訳(メタデータ) (2023-04-04T20:27:18Z) - A Survey on Label-efficient Deep Segmentation: Bridging the Gap between
Weak Supervision and Dense Prediction [115.9169213834476]
本稿では,ラベル効率の高いセグメンテーション手法について概説する。
まず,様々な種類の弱いラベルによって提供される監督に従って,これらの手法を整理する分類法を開発する。
次に,既存のラベル効率のセグメンテーション手法を統一的な視点から要約する。
論文 参考訳(メタデータ) (2022-07-04T06:21:01Z) - Temporal Transductive Inference for Few-Shot Video Object Segmentation [27.140141181513425]
Few-shot Object segmentation (FS-VOS) は、初期訓練中に見えないクラスのラベル付き例を用いて、ビデオフレームのセグメンテーションを目的としている。
我々のアプローチの鍵は、グローバルな時間的制約とローカルな時間的制約の両方を使用することである。
経験的に、我々のモデルは、YouTube-VIS上の組合間の平均交点を2.8%上回る、最先端のメタラーニングアプローチより優れている。
論文 参考訳(メタデータ) (2022-03-27T14:08:30Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
そこで我々は,TraSeTRを提案する。TraSeTR,TraSeTR,Trace-to-Segment Transformerは,手術器具のセグメンテーションを支援する。
TraSeTRは、機器の種類、位置、アイデンティティとインスタンスレベルの予測を共同で理由付けている。
提案手法の有効性を,3つの公開データセットに対して,最先端の計器型セグメンテーション結果を用いて実証した。
論文 参考訳(メタデータ) (2022-02-17T05:52:18Z) - Anomaly Transformer: Time Series Anomaly Detection with Association
Discrepancy [68.86835407617778]
Anomaly Transformerは、6つの教師なし時系列異常検出ベンチマークで最先端のパフォーマンスを達成する。
Anomaly Transformerは、6つの教師なし時系列異常検出ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-10-06T10:33:55Z) - Disentangling Human Error from the Ground Truth in Segmentation of
Medical Images [12.009437407687987]
本稿では,純粋にノイズの多い観測のみから,個々のアノテータの信頼性,真のセグメンテーションラベル分布まで,共同学習手法を提案する。
本手法は,必要ならばシミュレートした3つの医用画像セグメンテーションデータセットと実際の多彩なアノテーションに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-07-31T11:03:12Z) - Weakly Supervised Temporal Action Localization with Segment-Level Labels [140.68096218667162]
時間的アクションローカライゼーションは、テストパフォーマンスとアノテーション時間コストのトレードオフを示す。
ここでは、アノテーションがアクションを観察するときにセグメントがラベル付けされる。
我々は、ラベル付きセグメントから積分的な動作部分を学ぶために、損失サンプリングと見なされる部分的なセグメント損失を考案する。
論文 参考訳(メタデータ) (2020-07-03T10:32:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。