論文の概要: Weakly-Supervised Learning via Multi-Lateral Decoder Branching for Guidewire Segmentation in Robot-Assisted Cardiovascular Catheterization
- arxiv url: http://arxiv.org/abs/2404.07594v1
- Date: Thu, 11 Apr 2024 09:23:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 14:29:24.099875
- Title: Weakly-Supervised Learning via Multi-Lateral Decoder Branching for Guidewire Segmentation in Robot-Assisted Cardiovascular Catheterization
- Title(参考訳): ロボット補助心血管カテーテルにおけるガイドワイヤ分割のための多層デコーダ分岐による弱覚的学習
- Authors: Olatunji Mumini Omisore, Toluwanimi Akinyemi, Anh Nguyen, Lei Wang,
- Abstract要約: 心臓血管造影検査におけるツールセグメンテーションのための多面的擬似ラベリングを用いた弱教師付き学習法を提案する。
我々は,ロボット心カテーテル手術中に得られた弱注釈データを用いて,エンドツーエンドのモデルを訓練した。
従来の3種類の心血管造影法と比較して,3種類の心血管造影データに対して高いセグメンテーション性能を示した。
- 参考スコア(独自算出の注目度): 4.894147633944561
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although robot-assisted cardiovascular catheterization is commonly performed for intervention of cardiovascular diseases, more studies are needed to support the procedure with automated tool segmentation. This can aid surgeons on tool tracking and visualization during intervention. Learning-based segmentation has recently offered state-of-the-art segmentation performances however, generating ground-truth signals for fully-supervised methods is labor-intensive and time consuming for the interventionists. In this study, a weakly-supervised learning method with multi-lateral pseudo labeling is proposed for tool segmentation in cardiac angiograms. The method includes a modified U-Net model with one encoder and multiple lateral-branched decoders that produce pseudo labels as supervision signals under different perturbation. The pseudo labels are self-generated through a mixed loss function and shared consistency in the decoders. We trained the model end-to-end with weakly-annotated data obtained during robotic cardiac catheterization. Experiments with the proposed model shows weakly annotated data has closer performance to when fully annotated data is used. Compared to three existing weakly-supervised methods, our approach yielded higher segmentation performance across three different cardiac angiogram data. With ablation study, we showed consistent performance under different parameters. Thus, we offer a less expensive method for real-time tool segmentation and tracking during robot-assisted cardiac catheterization.
- Abstract(参考訳): ロボット補助型心血管カテーテルは, 心臓血管疾患の介入のために一般的に行われているが, 自動的ツールセグメンテーションによる治療を支援するためには, さらなる研究が必要である。
これにより、介入中の外科医がツールの追跡と視覚化を行うのに役立つ。
学習ベースのセグメンテーションは、最近最先端のセグメンテーションパフォーマンスを提供しているが、完全に教師された手法のための地味な信号を生成することは、介入者にとって労働集約的であり、時間を要する。
本研究では,多面的擬似ラベルを用いた弱教師付き学習法を提案し,心血管造影におけるツールセグメンテーションについて検討した。
この方法は、1つのエンコーダと、異なる摂動下で疑似ラベルを監視信号として生成する複数の横分岐デコーダを備えた修正U-Netモデルを含む。
擬似ラベルは、混合損失関数とデコーダ内の共有一貫性によって自己生成される。
我々は,ロボット心カテーテル手術中に得られた弱注釈データを用いて,エンドツーエンドのモデルを訓練した。
提案モデルを用いた実験により, 弱アノテートされたデータは, 完全アノテートされたデータを使用する場合に, より近い性能を示す。
従来の3種類の心血管造影法と比較して,3種類の心血管造影データに対して高いセグメンテーション性能を示した。
アブレーション実験では,異なるパラメータで一貫した性能を示した。
そこで本研究では,ロボットによる心臓カテーテル治療中に,リアルタイムツールのセグメンテーションとトラッキングを行うための安価な方法を提案する。
関連論文リスト
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Scribble-based 3D Multiple Abdominal Organ Segmentation via
Triple-branch Multi-dilated Network with Pixel- and Class-wise Consistency [20.371144313009122]
そこで本研究では,CTからスクリブル制御された多発性腹部臓器分節に対する2つの整合性制約を有する新しい3Dフレームワークを提案する。
より安定した教師なし学習のために、voxel-wiseの不確実性を用いて、ソフトな擬似ラベルを修正し、各デコーダの出力を監督する。
公開WORDデータセットの実験により,本手法は既存の5つのスクリブル教師付き手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-09-18T12:50:58Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
そこで我々は,様々な外科手術を施した楽器の先端を正確に分類する新しいビジュアル・キネマティクスグラフ学習フレームワークを提案する。
具体的には、画像とキネマティクスの両方から楽器部品のリレーショナル特徴を符号化するグラフ学習フレームワークを提案する。
クロスモーダル・コントラッシブ・ロスは、キネマティクスからチップセグメンテーションのイメージへの頑健な幾何学的先行を組み込むように設計されている。
論文 参考訳(メタデータ) (2023-09-02T14:52:58Z) - Extraction of volumetric indices from echocardiography: which deep
learning solution for clinical use? [6.144041824426555]
提案した3D nnU-Netは,2D法と繰り返しセグメンテーション法よりも優れていることを示す。
実験の結果、十分なトレーニングデータがあれば、3D nnU-Netは日常的な臨床機器の基準を満たす最初の自動化ツールとなる可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-03T09:38:52Z) - Unsupervised Tissue Segmentation via Deep Constrained Gaussian Network [13.331718119215436]
本稿では、エンドツーエンドの深層混合モデルと制約付き指標を統合することにより、教師なし学習パラダイムを提案する。
パブリックデータセットと社内データセットの両方で検証することにより、提案した深い制約付きガウスネットワークは、大幅にパフォーマンスが向上する。
論文 参考訳(メタデータ) (2022-08-04T22:25:25Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
シーンセグメンテーションを促進するために,新しい擬似ラベル付きクロスビデオコントラスト学習法であるPGV-CLを提案する。
本研究では,ロボット外科手術データセットEndoVis18と白内障手術データセットCaDISについて検討した。
論文 参考訳(メタデータ) (2022-07-20T05:42:19Z) - Co-Generation and Segmentation for Generalized Surgical Instrument
Segmentation on Unlabelled Data [49.419268399590045]
正確な機器追跡と拡張現実オーバーレイには、ロボット支援手術のための外科用機器セグメンテーションが必要です。
深層学習法では手術器具のセグメンテーションに最先端のパフォーマンスが示されたが,結果はラベル付きデータに依存する。
本稿では,ロボットによる手術を含むさまざまなデータセット上で,これらの手法の限定的な一般化性を実証する。
論文 参考訳(メタデータ) (2021-03-16T18:41:18Z) - Reciprocal Landmark Detection and Tracking with Extremely Few
Annotations [10.115679843920958]
本稿では,心エコーラベルのスパース特性を扱うために,新しいエンドツーエンドの相互検出・追跡モデルを提案する。
このモデルは、心臓のシネシーケンス全体にわたって注釈付きフレームをほとんど使わずにトレーニングされ、ランドマークの一貫した検出と追跡が生成される。
論文 参考訳(メタデータ) (2021-01-27T06:59:41Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Learning Motion Flows for Semi-supervised Instrument Segmentation from
Robotic Surgical Video [64.44583693846751]
本研究は,スパースアノテーションを用いたロボット手術ビデオから半教師楽器のセグメンテーションについて検討する。
生成されたデータペアを利用することで、我々のフレームワークはトレーニングシーケンスの時間的一貫性を回復し、強化することができます。
その結果,本手法は最先端の半教師あり手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-06T02:39:32Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。