論文の概要: A Short Review on Novel Approaches for Maximum Clique Problem: from Classical algorithms to Graph Neural Networks and Quantum algorithms
- arxiv url: http://arxiv.org/abs/2403.09742v1
- Date: Wed, 13 Mar 2024 20:12:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 21:35:10.698622
- Title: A Short Review on Novel Approaches for Maximum Clique Problem: from Classical algorithms to Graph Neural Networks and Quantum algorithms
- Title(参考訳): 最大傾き問題に対する新しいアプローチに関する短いレビュー:古典的アルゴリズムからグラフニューラルネットワークと量子アルゴリズムへ
- Authors: Raffaele Marino, Lorenzo Buffoni, Bogdan Zavalnij,
- Abstract要約: この写本は、最大傾倒問題を解くための単純な古典的なアルゴリズムを網羅している。
レビューでは、古典的および新しい学習、量子アルゴリズムをテストするためのベンチマークで締めくくられている。
- 参考スコア(独自算出の注目度): 1.1470070927586018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This manuscript provides a comprehensive review of the Maximum Clique Problem, a computational problem that involves finding subsets of vertices in a graph that are all pairwise adjacent to each other. The manuscript covers in a simple way classical algorithms for solving the problem and includes a review of recent developments in graph neural networks and quantum algorithms. The review concludes with benchmarks for testing classical as well as new learning, and quantum algorithms.
- Abstract(参考訳): この写本は、最大傾き問題(Maximum Clique Problem)の包括的なレビューを提供する。
この原稿は、この問題を解決するための単純な方法で古典的なアルゴリズムをカバーし、グラフニューラルネットワークと量子アルゴリズムの最近の発展のレビューを含む。
レビューでは、古典的および新しい学習、量子アルゴリズムをテストするためのベンチマークで締めくくられている。
関連論文リスト
- Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
最適化問題に取り組むための新たな戦略は、従来のアルゴリズムに代わるグラフニューラルネットワーク(GNN)の採用である。
GNNや従来のアルゴリズムソルバがCOの領域で人気が高まっているにもかかわらず、それらの統合利用とエンドツーエンドフレームワークにおけるそれらの相関について限定的な研究がなされている。
我々は、GNNを利用してCO問題に補助的なサポートで対処する決定に焦点を当てたフレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-05T22:52:27Z) - Benchmarking ChatGPT on Algorithmic Reasoning [58.50071292008407]
GNN向けに設計されたCLRSベンチマークスイートからChatGPTのアルゴリズム問題を解く能力を評価する。
ChatGPTは、Pythonを使ってこれらの問題を解決することで、専門家のGNNモデルより優れています。
論文 参考訳(メタデータ) (2024-04-04T13:39:06Z) - Lower bounds for quantum-inspired classical algorithms via communication complexity [0.5461938536945723]
線形回帰の解法,クラスタリングの監督,主成分分析,レコメンデーションシステム,ハミルトニアンシミュレーションに焦点をあてる。
基底行列のフロベニウスノルムの観点で二次下界を証明する。
これらの問題に対する量子アルゴリズムはフロベニウスノルムにおいて線型であるため、この結果は量子古典的分離が少なくとも二次的であることを意味する。
論文 参考訳(メタデータ) (2024-02-24T02:15:00Z) - Comparison among Classical, Probabilistic and Quantum Algorithms for
Hamiltonian Cycle problem [0.0]
ハミルトニアンサイクル問題(HCP)は、n 個のノードと m 個のエッジを持つグラフ G を持ち、各ノードを正確に1度に接続する経路を見つけることである。
本稿では、計算の異なるモデル、特に確率的および量子的モデルを用いて、aHCPを解くアルゴリズムを比較する。
論文 参考訳(メタデータ) (2023-11-18T02:36:10Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
我々は、反復最大量子アルゴリズム(Iterative Maximum Quantum Algorithms)と呼ばれる、量子最適化のための新しいハイブリッドアプローチのクラスについて研究する。
深度$p=1$のQAOAの場合、このアルゴリズムはMISの古典的欲求アルゴリズムと全く同じ操作と選択を行う。
論文 参考訳(メタデータ) (2023-09-22T18:00:03Z) - Minimalistic Predictions to Schedule Jobs with Online Precedence
Constraints [117.8317521974783]
オンライン優先制約による非サーボ的スケジューリングについて検討する。
アルゴリズムは、任意のジョブ依存に偏りがなく、前任者がすべて完了した場合に限り、ジョブについて学習する。
論文 参考訳(メタデータ) (2023-01-30T13:17:15Z) - A brief introduction to quantum algorithms [3.454865774480229]
まず、量子並列性、量子アルゴリズムの基本的枠組み、および量子アルゴリズム設計の難しさを解明することから始める。
その後、過去30年から40年にわたる量子アルゴリズム研究の進歩の歴史的概要に焦点をあてる。
最後に、量子アルゴリズムの研究に関する2つの一般的な疑問を明らかにし、さらなる探索のために読者を刺激することを望んでいる。
論文 参考訳(メタデータ) (2022-12-21T03:00:25Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - The CLRS Algorithmic Reasoning Benchmark [28.789225199559834]
アルゴリズムの学習表現は機械学習の新たな領域であり、ニューラルネットワークから古典的なアルゴリズムで概念をブリッジしようとしている。
本稿では,従来のアルゴリズムを包括するCLRS Algorithmic Reasoning Benchmarkを提案する。
我々のベンチマークは、ソート、探索、動的プログラミング、グラフアルゴリズム、文字列アルゴリズム、幾何アルゴリズムなど、様々なアルゴリズムの推論手順にまたがっている。
論文 参考訳(メタデータ) (2022-05-31T09:56:44Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
まず、量子力学とグラフ理論の相関関係について、量子コンピュータが有用な解を生成できることを示す。
本稿では,その実践性と適用性について,一般的なグラフ学習手法について概説する。
今後の研究の触媒として期待される量子グラフ学習のスナップショットを提供する。
論文 参考訳(メタデータ) (2022-02-19T02:56:47Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
我々は高密度サブグラフ発見のための新しい学習問題を導入する。
まず,確率の高いほぼ最適解を求めるエッジ時間アルゴリズムを提案する。
そして、理論的保証のあるよりスケーラブルなアルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-06-24T11:37:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。