論文の概要: Socially Integrated Navigation: A Social Acting Robot with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2403.09793v1
- Date: Thu, 14 Mar 2024 18:25:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 21:25:23.886798
- Title: Socially Integrated Navigation: A Social Acting Robot with Deep Reinforcement Learning
- Title(参考訳): ソーシャル統合ナビゲーション: 深層強化学習型ソーシャルアクティベーションロボット
- Authors: Daniel Flögel, Lars Fischer, Thomas Rudolf, Tobias Schürmann, Sören Hohmann,
- Abstract要約: 移動ロボットは様々な混み合った状況で大規模に使われており、私たちの社会の一部になっている。
個人を考慮した移動ロボットの社会的に許容されるナビゲーション行動は、スケーラブルなアプリケーションと人間の受容にとって必須の要件である。
本稿では,ロボットの社会行動が適応的であり,人間との相互作用から生じる,社会統合型ナビゲーション手法を提案する。
- 参考スコア(独自算出の注目度): 0.7864304771129751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile robots are being used on a large scale in various crowded situations and become part of our society. The socially acceptable navigation behavior of a mobile robot with individual human consideration is an essential requirement for scalable applications and human acceptance. Deep Reinforcement Learning (DRL) approaches are recently used to learn a robot's navigation policy and to model the complex interactions between robots and humans. We propose to divide existing DRL-based navigation approaches based on the robot's exhibited social behavior and distinguish between social collision avoidance with a lack of social behavior and socially aware approaches with explicit predefined social behavior. In addition, we propose a novel socially integrated navigation approach where the robot's social behavior is adaptive and emerges from the interaction with humans. The formulation of our approach is derived from a sociological definition, which states that social acting is oriented toward the acting of others. The DRL policy is trained in an environment where other agents interact socially integrated and reward the robot's behavior individually. The simulation results indicate that the proposed socially integrated navigation approach outperforms a socially aware approach in terms of distance traveled, time to completion, and negative impact on all agents within the environment.
- Abstract(参考訳): 移動ロボットは様々な混み合った状況で大規模に使われており、私たちの社会の一部になっている。
個人を考慮した移動ロボットの社会的に許容されるナビゲーション行動は、スケーラブルなアプリケーションと人間の受容にとって必須の要件である。
深層強化学習(DRL)アプローチは、ロボットのナビゲーションポリシーを学習し、ロボットと人間の複雑な相互作用をモデル化するために最近使用されている。
本稿では,ロボットが提示する社会的行動に基づいて既存のDRLベースのナビゲーションアプローチを分割し,社会的行動の欠如による社会的衝突回避と,社会的行動を明確に定義した社会的行動を伴う社会的認知アプローチを区別することを提案する。
さらに,ロボットの社会的行動が適応的であり,人間との相互作用から生じる,社会的統合ナビゲーション手法を提案する。
我々のアプローチの定式化は、社会的行為が他者の行動に向けられているという社会学的定義から導かれる。
DRLポリシーは、他のエージェントが社会的に統合された相互作用を行い、ロボットの振る舞いを個別に報酬する環境で訓練される。
シミュレーションの結果, 提案手法は, 移動距離, 完了までの時間, 環境中の全てのエージェントに対する負の影響において, 社会的に意識したアプローチよりも優れていることが示された。
関連論文リスト
- Learning Social Cost Functions for Human-Aware Path Planning [2.6995631218854235]
本稿では,一般的な社会的シナリオを認識し,それに対応するために従来のプランナーのコスト関数を変更する新しい手法を提案する。
我々のアプローチでは、ロボットはタスクごとに異なるモジュールを持つのではなく、単一の学習モデルで異なる社会的規範を学習することができる。
論文 参考訳(メタデータ) (2024-07-15T08:57:02Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
本稿では,共有ロボット表現空間における社会的動き予測のモデル化を提案する。
ECHOは上記の共有空間で活動し、社会的シナリオで遭遇したエージェントの将来の動きを予測する。
我々は,多対人動作予測タスクにおけるモデルの評価を行い,最先端の性能を大きなマージンで獲得する。
論文 参考訳(メタデータ) (2024-02-07T11:37:14Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Exploring Social Motion Latent Space and Human Awareness for Effective
Robot Navigation in Crowded Environments [3.714800947440209]
提案手法は,成功率,航法時間,軌道長などのソーシャルナビゲーション指標を大幅に改善する。
ロボットに対する人間の意識の概念は、社会ロボットナビゲーションフレームワークに導入されている。
論文 参考訳(メタデータ) (2023-10-11T09:25:24Z) - Principles and Guidelines for Evaluating Social Robot Navigation
Algorithms [44.51586279645062]
社会的ロボットナビゲーションは、動的エージェントとそのロボット行動の適切性に対する認識が関係しているため、評価が難しい。
コントリビューションには、(a)安全性、快適性、妥当性、丁寧さ、社会的能力、エージェント理解、活動性、文脈に対する応答性に関する原則、(b)メトリクスの使用のためのガイドライン、シナリオ、ベンチマーク、データセット、社会ナビゲーションを評価するためのシミュレーター、(c)様々なシミュレーター、ロボット、データセットの結果の比較を容易にするソーシャルナビゲーションメトリクスフレームワークなどが含まれます。
論文 参考訳(メタデータ) (2023-06-29T07:31:43Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Gesture2Path: Imitation Learning for Gesture-aware Navigation [54.570943577423094]
Gesture2Pathは、画像に基づく模倣学習とモデル予測制御を組み合わせた新しいソーシャルナビゲーション手法である。
実際のロボットに本手法をデプロイし,4つのジェスチャーナビゲーションシナリオに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2022-09-19T23:05:36Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
社会ナビゲーションは、ロボットのような自律的なエージェントが、人間のような他の知的エージェントの存在下で、社会的に従順な方法でナビゲートする能力である。
私たちのデータセットには8.7時間、128の軌道、25マイルの社会的に適合した人間の遠隔運転デモが含まれています。
論文 参考訳(メタデータ) (2022-03-28T19:09:11Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z) - From Learning to Relearning: A Framework for Diminishing Bias in Social
Robot Navigation [3.3511723893430476]
社会的ナビゲーションモデルは、差別や差別のような社会的不公平を複製し、促進し、増幅することができる。
提案するフレームワークは,安全性と快適性を考慮したソーシャルコンテキストを学習プロセスに組み込んだtextitlearningと,発生前に潜在的に有害な結果を検出し修正するtextitrelearningの2つのコンポーネントで構成されている。
論文 参考訳(メタデータ) (2021-01-07T17:42:35Z) - Social Navigation with Human Empowerment driven Deep Reinforcement
Learning [20.815007485176615]
次世代のモバイルロボットは、人間の協力者によって受け入れられるために、社会的に準拠する必要がある。
本稿では,古典的acfRLのアプローチを超えて,エンパワーメントを用いた本質的なモチベーションをエージェントに提供する。
我々のアプローチは、人間との距離を最小化し、それによって、効率的に目標に向かって移動しながら、人間の移動時間を短縮するので、人間に肯定的な影響を与える。
論文 参考訳(メタデータ) (2020-03-18T11:16:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。