SO(n) AKLT Chains as Symmetry Protected Topological Quantum Ground States
- URL: http://arxiv.org/abs/2403.09951v1
- Date: Fri, 15 Mar 2024 01:22:49 GMT
- Title: SO(n) AKLT Chains as Symmetry Protected Topological Quantum Ground States
- Authors: Michael Ragone,
- Abstract summary: This thesis studies a pair of symmetry protected topological (SPT) phases which arise when considering one-dimensional quantum spin systems.
We present new results describing their ground state structure and, when $n$ is even, their peculiar $O(n)$-to-$SO(n)$ symmetry breaking.
We extend Ogata's definition of an SPT index for a split state for a finite symmetry group $G$ to an SPT index for a compact Lie group $G$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This thesis studies a pair of symmetry protected topological (SPT) phases which arise when considering one-dimensional quantum spin systems possessing a natural orthogonal group symmetry. Particular attention is given to a family of exactly solvable models whose ground states admit a matrix product state description and generalize the AKLT chain. We call these models ``$SO(n)$ AKLT chains'' and the phase they occupy the ``$SO(n)$ Haldane phase''. We present new results describing their ground state structure and, when $n$ is even, their peculiar $O(n)$-to-$SO(n)$ symmetry breaking. We also prove that these states have arbitrarily large correlation and injectivity length by increasing $n$, but all have a 2-local parent Hamiltonian, in contrast to the natural expectation that the interaction range of a parent Hamiltonian should diverge as these quantities diverge. We extend Ogata's definition of an SPT index for a split state for a finite symmetry group $G$ to an SPT index for a compact Lie group $G$. We then compute this index, which takes values in the second Borel group cohomology $H^2(SO(n),U(1))$, at a single point in each of the SPT phases. The two points have different indices, confirming the two SPT phases are indeed distinct. Chapter 1 contains an introduction with a detailed overview of the contents of this thesis, which includes several chapters of background information before presenting new results in Chapter 7 and Chapter 8.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Strong-to-weak spontaneous symmetry breaking meets average symmetry-protected topological order [17.38734393793605]
We propose a new class of phases, termed the double ASPT phase, which emerges from a nontrivial extension of these two orders.
This new phase is absent from prior studies and cannot exist in conventional closed systems.
arXiv Detail & Related papers (2024-10-17T16:36:53Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Non-invertible symmetry-protected topological order in a group-based cluster state [0.5461938536945721]
We introduce a one-dimensional stabilizer Hamiltonian composed of group-based Pauli operators whose ground state is a $Gtimes textRep(G)$-symmetric state.
We show that this state lies in a symmetry-protected topological (SPT) phase protected by $Gtimes textRep(G)$ symmetry, distinct from the symmetric product state by a duality argument.
arXiv Detail & Related papers (2023-12-14T18:56:20Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Symmetry-enriched topological order from partially gauging
symmetry-protected topologically ordered states assisted by measurements [1.2809525640002364]
It is known that for a given symmetry group $G$, the 2D SPT phase protected by $G$ is dual to the 2D topological phase exemplified by the twisted quantum double model $Domega(G)$ via gauging the global symmetry $G$.
Here, we review the general approach to gauging a $G$-SPT starting from a fixed-point ground-state wave function and applying a $N$-step gauging procedure.
We provide an in-depth analysis of the intermediate states emerging during the N-step gauging and provide tools to measure and identify the emerging symmetry-
arXiv Detail & Related papers (2023-05-16T18:40:56Z) - The Asymmetric Valence-Bond-Solid States in Quantum Spin Chains: The
Difference Between Odd and Even Spins [0.0]
We develop an intuitive diagrammatic explanation of the difference between chains with odd $S$ and even $S$.
This is at the heart of the theory of symmetry-protected topological (SPT) phases.
It also extends to spin chains with general integer $S$ and provides us with an explanation of the essential difference between models with odd and even spins.
arXiv Detail & Related papers (2022-05-02T04:58:31Z) - Pivot Hamiltonians as generators of symmetry and entanglement [0.0]
We consider obtaining the entangler from a local 'pivot' Hamiltonian $H_piv$ such that $U = eipi H_piv$.
A remarkable property of such a $U(1)$ pivot symmetry is that it shares a mutual anomaly with the symmetry protecting the nearby SPT phase.
arXiv Detail & Related papers (2021-10-14T17:57:32Z) - Symmetry from Entanglement Suppression [0.0]
We show that a minimally entangling $S$-matrix would give rise to global symmetries.
For $N_q$ species of qubit, the Identity gate is associated with an $[SU(2)]N_q$ symmetry.
arXiv Detail & Related papers (2021-04-22T02:50:10Z) - Complete entropic inequalities for quantum Markov chains [17.21921346541951]
We prove that every GNS-symmetric quantum Markov semigroup on a finite dimensional algebra satisfies a modified log-Sobolev inequality.
We also establish the first general approximateization property of relative entropy.
arXiv Detail & Related papers (2021-02-08T11:47:37Z) - Boundary time crystals in collective $d$-level systems [64.76138964691705]
Boundary time crystals are non-equilibrium phases of matter occurring in quantum systems in contact to an environment.
We study BTC's in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$.
arXiv Detail & Related papers (2021-02-05T19:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.