Skeleton-Based Human Action Recognition with Noisy Labels
- URL: http://arxiv.org/abs/2403.09975v2
- Date: Tue, 6 Aug 2024 00:28:44 GMT
- Title: Skeleton-Based Human Action Recognition with Noisy Labels
- Authors: Yi Xu, Kunyu Peng, Di Wen, Ruiping Liu, Junwei Zheng, Yufan Chen, Jiaming Zhang, Alina Roitberg, Kailun Yang, Rainer Stiefelhagen,
- Abstract summary: Label noise negatively affects the model's training, resulting in lower recognition quality.
NoiseEraSAR integrates global sample selection, co-teaching, and Cross-Modal Mixture-of-Experts strategies.
Our proposed approach demonstrates better performance on the established benchmark, setting new state-of-the-art standards.
- Score: 43.58994208412764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding human actions from body poses is critical for assistive robots sharing space with humans in order to make informed and safe decisions about the next interaction. However, precise temporal localization and annotation of activity sequences is time-consuming and the resulting labels are often noisy. If not effectively addressed, label noise negatively affects the model's training, resulting in lower recognition quality. Despite its importance, addressing label noise for skeleton-based action recognition has been overlooked so far. In this study, we bridge this gap by implementing a framework that augments well-established skeleton-based human action recognition methods with label-denoising strategies from various research areas to serve as the initial benchmark. Observations reveal that these baselines yield only marginal performance when dealing with sparse skeleton data. Consequently, we introduce a novel methodology, NoiseEraSAR, which integrates global sample selection, co-teaching, and Cross-Modal Mixture-of-Experts (CM-MOE) strategies, aimed at mitigating the adverse impacts of label noise. Our proposed approach demonstrates better performance on the established benchmark, setting new state-of-the-art standards. The source code for this study is accessible at https://github.com/xuyizdby/NoiseEraSAR.
Related papers
- AEON: Adaptive Estimation of Instance-Dependent In-Distribution and Out-of-Distribution Label Noise for Robust Learning [17.397478141194778]
Real-world datasets often contain a mix of in-distribution (ID) and out-of-distribution (OOD) instance-dependent label noise.
We propose the Adaptive Estimation of Instance-Dependent In-Distribution and Out-of-Distribution Label Noise (AEON) approach to address these research gaps.
AEON is an efficient one-stage noisy-label learning methodology that dynamically estimates instance-dependent ID and OOD label noise rates.
arXiv Detail & Related papers (2025-01-23T05:19:00Z) - NoisyAG-News: A Benchmark for Addressing Instance-Dependent Noise in Text Classification [7.464154519547575]
Existing research on learning with noisy labels predominantly focuses on synthetic noise patterns.
We constructed a benchmark dataset to better understand label noise in real-world text classification settings.
Our findings reveal that while pre-trained models are resilient to synthetic noise, they struggle against instance-dependent noise.
arXiv Detail & Related papers (2024-07-09T06:18:40Z) - Fine tuning Pre trained Models for Robustness Under Noisy Labels [34.68018860186995]
The presence of noisy labels in a training dataset can significantly impact the performance of machine learning models.
We introduce a novel algorithm called TURN, which robustly and efficiently transfers the prior knowledge of pre-trained models.
arXiv Detail & Related papers (2023-10-24T20:28:59Z) - Label Noise: Correcting the Forward-Correction [0.0]
Training neural network classifiers on datasets with label noise poses a risk of overfitting them to the noisy labels.
We propose an approach to tackling overfitting caused by label noise.
Motivated by this observation, we propose imposing a lower bound on the training loss to mitigate overfitting.
arXiv Detail & Related papers (2023-07-24T19:41:19Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Skeleton-Based Mutually Assisted Interacted Object Localization and
Human Action Recognition [111.87412719773889]
We propose a joint learning framework for "interacted object localization" and "human action recognition" based on skeleton data.
Our method achieves the best or competitive performance with the state-of-the-art methods for human action recognition.
arXiv Detail & Related papers (2021-10-28T10:09:34Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
Existing research on learning with noisy labels mainly focuses on synthetic label noise.
This work presents two new benchmark datasets (CIFAR-10N, CIFAR-100N)
We show that real-world noisy labels follow an instance-dependent pattern rather than the classically adopted class-dependent ones.
arXiv Detail & Related papers (2021-10-22T22:42:11Z) - Open-set Label Noise Can Improve Robustness Against Inherent Label Noise [27.885927200376386]
We show that open-set noisy labels can be non-toxic and even benefit the robustness against inherent noisy labels.
We propose a simple yet effective regularization by introducing Open-set samples with Dynamic Noisy Labels (ODNL) into training.
arXiv Detail & Related papers (2021-06-21T07:15:50Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Multi-Objective Interpolation Training for Robustness to Label Noise [17.264550056296915]
We show that standard supervised contrastive learning degrades in the presence of label noise.
We propose a novel label noise detection method that exploits the robust feature representations learned via contrastive learning.
Experiments on synthetic and real-world noise benchmarks demonstrate that MOIT/MOIT+ achieves state-of-the-art results.
arXiv Detail & Related papers (2020-12-08T15:01:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.