論文の概要: Progressive Divide-and-Conquer via Subsampling Decomposition for Accelerated MRI
- arxiv url: http://arxiv.org/abs/2403.10064v1
- Date: Fri, 15 Mar 2024 07:14:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 18:19:27.871405
- Title: Progressive Divide-and-Conquer via Subsampling Decomposition for Accelerated MRI
- Title(参考訳): 加速MRIのサブサンプリング分解による進行性分枝コンバータ
- Authors: Chong Wang, Lanqing Guo, Yufei Wang, Hao Cheng, Yi Yu, Bihan Wen,
- Abstract要約: 本稿では, サブサンプリングプロセスの分解を目的としたPDAC(Progressive Divide-And-Conquer)戦略を提案する。
提案手法は,一般に公開されている高速MRIとStanford2D FSEデータセットにおいて,優れた性能を実現する。
- 参考スコア(独自算出の注目度): 34.004099276013946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep unfolding networks (DUN) have emerged as a popular iterative framework for accelerated magnetic resonance imaging (MRI) reconstruction. However, conventional DUN aims to reconstruct all the missing information within the entire null space in each iteration. Thus it could be challenging when dealing with highly ill-posed degradation, usually leading to unsatisfactory reconstruction. In this work, we propose a Progressive Divide-And-Conquer (PDAC) strategy, aiming to break down the subsampling process in the actual severe degradation and thus perform reconstruction sequentially. Starting from decomposing the original maximum-a-posteriori problem of accelerated MRI, we present a rigorous derivation of the proposed PDAC framework, which could be further unfolded into an end-to-end trainable network. Specifically, each iterative stage in PDAC focuses on recovering a distinct moderate degradation according to the decomposition. Furthermore, as part of the PDAC iteration, such decomposition is adaptively learned as an auxiliary task through a degradation predictor which provides an estimation of the decomposed sampling mask. Following this prediction, the sampling mask is further integrated via a severity conditioning module to ensure awareness of the degradation severity at each stage. Extensive experiments demonstrate that our proposed method achieves superior performance on the publicly available fastMRI and Stanford2D FSE datasets in both multi-coil and single-coil settings.
- Abstract(参考訳): ディープ・アンフォールディング・ネットワーク (DUN) は、MRI (Accelerated Magnetic resonance Imaging) 再構成のための一般的な反復的枠組みとして登場した。
しかし、従来のDUNは、各イテレーションでヌル空間全体の欠落した情報を再構築することを目的としている。
したがって、非常に不適切な劣化に対処する場合、通常は不満足な再建につながる可能性がある。
本研究では,本研究で提案するPDAC(Progressive Divide-And-Conquer)戦略を提案する。
今回提案したPDACフレームワークの厳密な導出を行い,さらにエンドツーエンドのトレーニング可能なネットワークに展開する。
具体的には、PDACの各反復段階は、分解に応じて顕著な中等度劣化を回復することに焦点を当てる。
さらに、PDACイテレーションの一部として、分解されたサンプリングマスクを推定する劣化予測器を介して、そのような分解を補助タスクとして適応的に学習する。
この予測の後、サンプリングマスクは重度条件モジュールを介してさらに統合され、各ステージにおける劣化重度を確実に認識する。
広汎な実験により,提案手法は,マルチコイルおよび単一コイル設定の両方において,公開されている高速MRIおよびスタンフォード2D FSEデータセット上で優れた性能を発揮することが示された。
関連論文リスト
- Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers [53.298698981438]
これは、モデルを一連の劣化ベースでトレーニングし、これらのベースがゼロショットで構成できる可能性のある劣化を除去する、新しいタスク設定である。
段階的に問題に対処するLLMに着想を得たCoR(Chain-of-Thought)を提案する。
CoRは、未知の複合劣化を段階的に除去するようモデルに指示する。
論文 参考訳(メタデータ) (2024-10-11T10:21:42Z) - Unsupervised Adaptive Implicit Neural Representation Learning for
Scan-Specific MRI Reconstruction [8.721677700107639]
アンダーサンプリングにおけるスパーシリティレベルやパターンに制約されることなく、再構成品質を向上させる、教師なし適応型粗大化フレームワークを提案する。
我々は,獲得したk空間信号の自己超越的利用を段階的に洗練する,新しい学習戦略を統合する。
提案手法は,8倍のアンダーサンプリングを行うため,現在最先端のスキャン特異的MRI再構成技術より優れている。
論文 参考訳(メタデータ) (2023-12-01T16:00:16Z) - vSHARP: variable Splitting Half-quadratic Admm algorithm for Reconstruction of inverse-Problems [7.043932618116216]
vSHARP (variable Splitting Half-quadratic ADMM algorithm for Reconstruction of inverse Problems) は、医学的イメージング(MI)における不適切な逆問題の解法である。
データ一貫性のために、vSHARPは画像領域で微分勾配降下過程をアンロールし、一方、U-NetアーキテクチャのようなDLベースのデノイザは画質を高めるために適用される。
我々の最先端手法との比較分析は,これらの応用におけるvSHARPの優れた性能を示すものである。
論文 参考訳(メタデータ) (2023-09-18T17:26:22Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
オールインワンVRのためのクロスコンセントディープ・アンフォールディング・ネットワーク(CDUN)を提案する。
2つのカスケード手順を編成することにより、CDUNは様々な劣化に対する適応的な処理を達成する。
さらに、より隣接するフレームからの情報を活用するために、ウィンドウベースのフレーム間融合戦略を導入する。
論文 参考訳(メタデータ) (2023-09-04T14:18:00Z) - Self-Supervised MRI Reconstruction with Unrolled Diffusion Models [27.143473617162304]
自己監督型拡散再構成モデル(SSDiffRecon)を提案する。
SSDiffReconは、物理駆動処理のためのデータ一貫性ブロックと逆拡散ステップのためのクロスアテンショントランスフォーマーをインターリーブする条件拡散プロセスを表現する。
公開脳MRデータセットを用いた実験は、SSDiffReconの再構築速度と品質の点で、最先端の教師付きベースラインと自己教師付きベースラインに対する優位性を示す。
論文 参考訳(メタデータ) (2023-06-29T03:31:46Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
圧縮画像と物理マスクからパラメータを推定し,これらのパラメータを用いて各イテレーションを制御する,DAUF(Degradation-Aware Unfolding Framework)を提案する。
HST を DAUF に接続することにより,HSI 再構成のための変換器の深部展開法であるデグレーション・アウェア・アンフォールディング・ハーフシャッフル変換器 (DAUHST) を確立した。
論文 参考訳(メタデータ) (2022-05-20T11:37:44Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
本稿では,MRI再構成のためのリカレントトランスモデルである textbfReconFormer を提案する。
高度にアンダーサンプリングされたk空間データから高純度磁気共鳴像を反復的に再構成することができる。
パラメータ効率が向上し,最先端手法よりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-01-23T21:58:19Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
Zero-Shot Learned Adrial Transformers (SLATER) を用いた新しい非監視MRI再構成法を提案する。
アンダーサンプルテストデータ上でゼロショット再構成を行い、ネットワークパラメータを最適化して推論を行います。
脳MRIデータセットの実験は、いくつかの最先端の教師なし手法に対してSLATERの優れた性能を明らかに示している。
論文 参考訳(メタデータ) (2021-05-15T02:01:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。