Progressive Divide-and-Conquer via Subsampling Decomposition for Accelerated MRI
- URL: http://arxiv.org/abs/2403.10064v1
- Date: Fri, 15 Mar 2024 07:14:01 GMT
- Title: Progressive Divide-and-Conquer via Subsampling Decomposition for Accelerated MRI
- Authors: Chong Wang, Lanqing Guo, Yufei Wang, Hao Cheng, Yi Yu, Bihan Wen,
- Abstract summary: We propose a Progressive Divide-And-Conquer (PDAC) strategy, aiming to break down the subsampling process in the actual severe degradation.
Our proposed method achieves superior performance on the publicly available fastMRI and Stanford2D FSE datasets.
- Score: 34.004099276013946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep unfolding networks (DUN) have emerged as a popular iterative framework for accelerated magnetic resonance imaging (MRI) reconstruction. However, conventional DUN aims to reconstruct all the missing information within the entire null space in each iteration. Thus it could be challenging when dealing with highly ill-posed degradation, usually leading to unsatisfactory reconstruction. In this work, we propose a Progressive Divide-And-Conquer (PDAC) strategy, aiming to break down the subsampling process in the actual severe degradation and thus perform reconstruction sequentially. Starting from decomposing the original maximum-a-posteriori problem of accelerated MRI, we present a rigorous derivation of the proposed PDAC framework, which could be further unfolded into an end-to-end trainable network. Specifically, each iterative stage in PDAC focuses on recovering a distinct moderate degradation according to the decomposition. Furthermore, as part of the PDAC iteration, such decomposition is adaptively learned as an auxiliary task through a degradation predictor which provides an estimation of the decomposed sampling mask. Following this prediction, the sampling mask is further integrated via a severity conditioning module to ensure awareness of the degradation severity at each stage. Extensive experiments demonstrate that our proposed method achieves superior performance on the publicly available fastMRI and Stanford2D FSE datasets in both multi-coil and single-coil settings.
Related papers
- Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
We propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues.
We design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction.
Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
arXiv Detail & Related papers (2025-01-07T12:29:32Z) - Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers [53.298698981438]
This paper proposes a new task setting, i.e. Universal Image Restoration (UIR)
UIR doesn't require training on all the degradation combinations but only on a set of degradation bases and then removing any degradation that these bases can potentially compose in a zero-shot manner.
We propose Chain-of-Restoration (CoR) mechanism, which instructs models to remove unknown composite degradations step-by-step.
arXiv Detail & Related papers (2024-10-11T10:21:42Z) - Unsupervised Adaptive Implicit Neural Representation Learning for
Scan-Specific MRI Reconstruction [8.721677700107639]
We propose an unsupervised, adaptive coarse-to-fine framework that enhances reconstruction quality without being constrained by the sparsity levels or patterns in under-sampling.
We integrate a novel learning strategy that progressively refines the use of acquired k-space signals for self-supervision.
Our method outperforms current state-of-the-art scan-specific MRI reconstruction techniques, for up to 8-fold under-sampling.
arXiv Detail & Related papers (2023-12-01T16:00:16Z) - vSHARP: variable Splitting Half-quadratic Admm algorithm for Reconstruction of inverse-Problems [7.043932618116216]
vSHARP (variable Splitting Half-quadratic ADMM algorithm for Reconstruction of inverse Problems) is a novel Deep Learning (DL)-based method for solving ill-posed inverse problems arising in Medical Imaging (MI)
For data consistency, vSHARP unrolls a differentiable gradient descent process in the image domain, while a DL-based denoiser, such as a U-Net architecture, is applied to enhance image quality.
Our comparative analysis with state-of-the-art methods demonstrates the superior performance of vSHARP in these applications.
arXiv Detail & Related papers (2023-09-18T17:26:22Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
We propose a Cross-consistent Deep Unfolding Network (CDUN) for All-In-One VR.
By orchestrating two cascading procedures, CDUN achieves adaptive processing for diverse degradations.
In addition, we introduce a window-based inter-frame fusion strategy to utilize information from more adjacent frames.
arXiv Detail & Related papers (2023-09-04T14:18:00Z) - Self-Supervised MRI Reconstruction with Unrolled Diffusion Models [27.143473617162304]
We propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon)
SSDiffRecon expresses a conditional diffusion process that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing.
Experiments on public brain MR datasets demonstrate the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality.
arXiv Detail & Related papers (2023-06-29T03:31:46Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
We introduce a novel unsupervised MRI reconstruction method based on zero-Shot Learned Adrial TransformERs (SLATER)
A zero-shot reconstruction is performed on undersampled test data, where inference is performed by optimizing network parameters.
Experiments on brain MRI datasets clearly demonstrate the superior performance of SLATER against several state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-05-15T02:01:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.