論文の概要: DRAGIN: Dynamic Retrieval Augmented Generation based on the Information Needs of Large Language Models
- arxiv url: http://arxiv.org/abs/2403.10081v3
- Date: Sat, 21 Sep 2024 08:27:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 03:59:25.976937
- Title: DRAGIN: Dynamic Retrieval Augmented Generation based on the Information Needs of Large Language Models
- Title(参考訳): DRAGIN:大規模言語モデルの情報要求に基づく動的検索拡張生成
- Authors: Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, Yiqun Liu,
- Abstract要約: 大規模言語モデル(LLM)のリアルタイム情報要求に基づく動的検索拡張生成を導入する。
本フレームワークは,テキスト生成プロセスにおいて,LLMのリアルタイム情報要求に基づいて,いつ,何を取得するかを決定するように設計されている。
実験の結果,DRAGINは全タスクにおいて優れた性能を示し,本手法の有効性を実証した。
- 参考スコア(独自算出の注目度): 12.580730377998158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic retrieval augmented generation (RAG) paradigm actively decides when and what to retrieve during the text generation process of Large Language Models (LLMs). There are two key elements of this paradigm: identifying the optimal moment to activate the retrieval module (deciding when to retrieve) and crafting the appropriate query once retrieval is triggered (determining what to retrieve). However, current dynamic RAG methods fall short in both aspects. Firstly, the strategies for deciding when to retrieve often rely on static rules. Moreover, the strategies for deciding what to retrieve typically limit themselves to the LLM's most recent sentence or the last few tokens, while the LLM's real-time information needs may span across the entire context. To overcome these limitations, we introduce a new framework, DRAGIN, i.e., Dynamic Retrieval Augmented Generation based on the real-time Information Needs of LLMs. Our framework is specifically designed to make decisions on when and what to retrieve based on the LLM's real-time information needs during the text generation process. We evaluate DRAGIN along with existing methods comprehensively over 4 knowledge-intensive generation datasets. Experimental results show that DRAGIN achieves superior performance on all tasks, demonstrating the effectiveness of our method. We have open-sourced all the code, data, and models in GitHub: https://github.com/oneal2000/DRAGIN/tree/main
- Abstract(参考訳): 動的検索拡張生成(RAG)パラダイムは,Large Language Models(LLMs)のテキスト生成プロセスにおいて,いつ,何を検索するかを積極的に決定する。
このパラダイムには2つの重要な要素がある: 検索モジュールをアクティベートする最適なモーメントを識別する(検索するタイミングを決定する)ことと、検索が起動したら適切なクエリを作成する(検索する項目を決定する)ことである。
しかし、現在の動的RAGメソッドはどちらの面においても不足している。
まず、いつ取得するかを決める戦略は、しばしば静的なルールに依存します。
さらに、何を取得するかを決める戦略は、通常、LLMの最新の文や最後のいくつかのトークンに制限されるが、LLMのリアルタイム情報要求は、コンテキスト全体にまたがる可能性がある。
これらの制約を克服するために,LLMのリアルタイム情報要求に基づく動的検索拡張生成(DRAGIN)という新しいフレームワークを導入する。
本フレームワークは,テキスト生成プロセスにおいて,LLMのリアルタイム情報要求に基づいて,いつ,何を取得するかを決定するように設計されている。
DRAGINと既存の4つの知識集約型生成データセットを包括的に比較した。
実験の結果,DRAGINは全タスクにおいて優れた性能を示し,本手法の有効性を実証した。
https://github.com/oneal2000/DRAGIN/tree/main
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Enhancing Long Context Performance in LLMs Through Inner Loop Query Mechanism [2.919891871101241]
変換器は入力サイズと計算複雑性の2次スケーリングを持つ。
Retrieval-augmented Generation (RAG)は、検索システムを使用することで、より長いコンテキストを処理できる。
インナーループメモリ拡張ツリー検索(ILM-TR)という新しい手法を導入する。
論文 参考訳(メタデータ) (2024-10-11T19:49:05Z) - P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task [94.08478298711789]
Embodied Everyday Taskは、インボディードAIコミュニティで人気のあるタスクである。
自然言語命令は明示的なタスクプランニングを欠くことが多い。
タスク環境に関する知識をモデルに組み込むには、広範囲なトレーニングが必要である。
論文 参考訳(メタデータ) (2024-09-17T15:29:34Z) - MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery [24.38640001674072]
Retrieval-Augmented Generation (RAG)は、検索ツールを利用して外部データベースにアクセスする。
既存のRAGシステムは主に簡単な質問応答タスクに有効である。
本稿では,MemoRAGを提案する。
論文 参考訳(メタデータ) (2024-09-09T13:20:31Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - CorpusLM: Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks [20.390672895839757]
Retrieval-augmented Generation (RAG) は、事実精度を高めるための一般的なソリューションとして登場した。
従来の検索モジュールは、大きなドキュメントインデックスと生成タスクとの切り離しに依存していることが多い。
生成検索,クローズドブック生成,RAGを統合した統一言語モデルである textbfCorpusLM を提案する。
論文 参考訳(メタデータ) (2024-02-02T06:44:22Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Active Retrieval Augmented Generation [123.68874416084499]
外部知識資源から情報を取得することで、大きな言語モデル(LM)を拡張することは、有望な解決策である。
ほとんどの既存の検索拡張LMは、入力に基づいて一度だけ情報を検索する検索と生成のセットアップを採用している。
本稿では,将来的な内容を予測するために,文の予測を反復的に利用する汎用手法であるフォワード・フォワード・アクティブ・レトリヴァル・ジェネレーション・ジェネレーション(FLARE)を提案する。
論文 参考訳(メタデータ) (2023-05-11T17:13:40Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。