論文の概要: VRHCF: Cross-Source Point Cloud Registration via Voxel Representation and Hierarchical Correspondence Filtering
- arxiv url: http://arxiv.org/abs/2403.10085v1
- Date: Fri, 15 Mar 2024 08:00:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 18:09:44.012743
- Title: VRHCF: Cross-Source Point Cloud Registration via Voxel Representation and Hierarchical Correspondence Filtering
- Title(参考訳): VRHCF: Voxel表現と階層対応フィルタリングによるクロスソースポイントクラウド登録
- Authors: Guiyu Zhao, Zewen Du, Zhentao Guo, Hongbin Ma,
- Abstract要約: 広い適用性を有するポイントクラウド登録のための新しいフレームワークを提案する。
クロスソースのクラウド登録では、3DCSRデータセット上で最高のRRを獲得し、9.3%の改善率を示す。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Addressing the challenges posed by the substantial gap in point cloud data collected from diverse sensors, achieving robust cross-source point cloud registration becomes a formidable task. In response, we present a novel framework for point cloud registration with broad applicability, suitable for both homologous and cross-source registration scenarios. To tackle the issues arising from different densities and distributions in cross-source point cloud data, we introduce a feature representation based on spherical voxels. Furthermore, addressing the challenge of numerous outliers and mismatches in cross-source registration, we propose a hierarchical correspondence filtering approach. This method progressively filters out mismatches, yielding a set of high-quality correspondences. Our method exhibits versatile applicability and excels in both traditional homologous registration and challenging cross-source registration scenarios. Specifically, in homologous registration using the 3DMatch dataset, we achieve the highest registration recall of 95.1% and an inlier ratio of 87.8%. In cross-source point cloud registration, our method attains the best RR on the 3DCSR dataset, demonstrating a 9.3 percentage points improvement. The code is available at https://github.com/GuiyuZhao/VRHCF.
- Abstract(参考訳): 多様なセンサから収集されるポイントクラウドデータの大きなギャップによって引き起こされる課題に対処する上で、堅牢なクロスソースポイントクラウド登録を実現することは、非常に大きな課題となる。
これに対し,同種およびクロスソースの登録シナリオに適した広い適用性を有するポイントクラウド登録のための新しいフレームワークを提案する。
クロスソース・ポイント・クラウド・データにおける様々な密度や分布から生じる問題に対処するため,球面ボクセルに基づく特徴表現を導入する。
さらに、ソース間登録における多くの外れ値やミスマッチの課題に対処し、階層型対応フィルタリング手法を提案する。
この方法は次第にミスマッチを除去し、高品質な対応を与える。
提案手法は,従来のホモロジー登録とクロスソース登録の両シナリオにおいて,多種多様な適用性を示す。
具体的には,3DMatchデータセットを用いたホモログ登録では,95.1%,イリヤ比87.8%が最も高い登録リコールを達成した。
クロスソースのクラウド登録では、3DCSRデータセット上で最高のRRを獲得し、9.3%の改善率を示す。
コードはhttps://github.com/GuiyuZhao/VRHCFで公開されている。
関連論文リスト
- Fully-Geometric Cross-Attention for Point Cloud Registration [51.865371511201765]
ポイントクラウド登録のアプローチは、ノイズのあるポイント対応のため、ポイントクラウド間の重なりが低いときに失敗することが多い。
この問題に対処するTransformerベースのアーキテクチャに適した,新たなクロスアテンション機構を導入する。
我々はGromov-Wasserstein距離をクロスアテンションの定式化に統合し、異なる点雲間の点間距離を共同計算する。
点レベルでは,局所的な幾何学的構造情報を細かなマッチングのための点特徴に集約する自己認識機構も考案する。
論文 参考訳(メタデータ) (2025-02-12T10:44:36Z) - Cross-PCR: A Robust Cross-Source Point Cloud Registration Framework [0.7499722271664147]
本稿では,ロバストかつ高精度なクロスソース登録を実現するために,密度ロバストな特徴抽出とマッチング方式を提案する。
オープンソース3DCSRデータセットのKinect-LiDARシーンでは,特徴マッチングリコールを63.5ポイント (pp) ,登録リコールを57.6pp。
論文 参考訳(メタデータ) (2024-12-25T11:14:59Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
マルチウェイポイントクラウドモザイクのための新しいフレームワーク(水曜日)を紹介する。
我々のアプローチの核心は、重複を識別し、注意点を洗練する学習されたペアワイズ登録アルゴリズムODINである。
4つの多種多様な大規模データセットを用いて、我々の手法は、全てのベンチマークにおいて大きなマージンで、最先端のペアとローテーションの登録結果を比較した。
論文 参考訳(メタデータ) (2024-03-30T17:29:13Z) - ZeroReg: Zero-Shot Point Cloud Registration with Foundation Models [77.84408427496025]
最先端の3Dポイントクラウド登録方法は、トレーニングのためにラベル付き3Dデータセットに依存している。
我々は2次元基礎モデルを用いて3次元対応を予測するゼロショット登録手法であるZeroRegを紹介する。
論文 参考訳(メタデータ) (2023-12-05T11:33:16Z) - Robust Multiview Point Cloud Registration with Reliable Pose Graph
Initialization and History Reweighting [63.95845583460312]
本稿では,ポイントクラウドのマルチビュー登録のための新しい手法を提案する。
提案手法は,3DMatchデータセットの登録リコール率を11%,ScanNetデータセットの登録エラー率を13%向上させる。
論文 参考訳(メタデータ) (2023-04-02T06:43:40Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
確率的3Dポイントクラウド登録法は、ノイズ、アウトレーヤ、密度変動を克服する競合性能を示した。
本稿では,一致したガウス混合モデル(GMM)パラメータから最適変換を演算する,重複誘導確率登録手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:02:33Z) - Learning to Register Unbalanced Point Pairs [10.369750912567714]
最近の3D登録法は,大規模あるいは部分的に重複する点対を効果的に扱うことができる。
非平衡点対に対する新しい3次元登録手法であるUPPNetを提案する。
論文 参考訳(メタデータ) (2022-07-09T08:03:59Z) - COTReg:Coupled Optimal Transport based Point Cloud Registration [28.730827908402286]
本稿では,3次元点雲登録の対応性を予測するための学習フレームワークCOTRegを提案する。
2つのマッチングをワッサーシュタイン距離ベースとグロモフ=ワッサーシュタイン距離ベース最適化に変換する。
我々の対応予測パイプラインは、FCGFのような学習ベースの機能やFPFHのような伝統的な記述子に簡単に統合できます。
論文 参考訳(メタデータ) (2021-12-29T03:20:18Z) - Fast and Robust Registration of Partially Overlapping Point Clouds [5.073765501263891]
部分的に重なる点雲のリアルタイム登録は、自動運転車の協調認識に新たな応用をもたらす。
これらのアプリケーションにおける点雲間の相対的な変換は、従来のSLAMやオドメトリーアプリケーションよりも高い。
本稿では,効率の良い特徴エンコーダを用いて対応を学習する部分重複点群に対する新しい登録法を提案する。
論文 参考訳(メタデータ) (2021-12-18T12:39:05Z) - GenReg: Deep Generative Method for Fast Point Cloud Registration [18.66568286698704]
我々は,クラウド登録をポイントとする深層生成ニューラルネットワークを探索し,新しいデータ駆動型登録アルゴリズムを提案する。
ModelNet40と7Sceneのデータセットを用いた実験により、提案アルゴリズムが最先端の精度と効率を達成することを示した。
論文 参考訳(メタデータ) (2021-11-23T10:52:09Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
6次元変換パラメータ空間におけるハフ投票を利用した実世界の3Dスキャンのペア登録のための効率的なフレームワークを提案する。
提案手法は, 3DMatch と 3DLoMatch のベンチマークにおいて, KITTI odometry データセットで同等の性能を達成しながら, 最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-09-09T14:38:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。