論文の概要: Monkeypox disease recognition model based on improved SE-InceptionV3
- arxiv url: http://arxiv.org/abs/2403.10087v2
- Date: Tue, 7 May 2024 12:27:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 19:13:23.607741
- Title: Monkeypox disease recognition model based on improved SE-InceptionV3
- Title(参考訳): SE-InceptionV3の改良に基づくサルポックス病の認識モデル
- Authors: Junzhuo Chen, Zonghan Lu, Shitong Kang,
- Abstract要約: 本研究はSE-InceptionV3モデルを改良し,SENetモジュールを組み込み,インセプションV3フレームワークにL2正規化を組み込むことでサルポックス病の検出を向上する。
本モデルは,テストセットにおいて96.71%の精度を示し,従来の手法やディープラーニングモデルよりも優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the wake of the global spread of monkeypox, accurate disease recognition has become crucial. This study introduces an improved SE-InceptionV3 model, embedding the SENet module and incorporating L2 regularization into the InceptionV3 framework to enhance monkeypox disease detection. Utilizing the Kaggle monkeypox dataset, which includes images of monkeypox and similar skin conditions, our model demonstrates a noteworthy accuracy of 96.71% on the test set, outperforming conventional methods and deep learning models. The SENet modules channel attention mechanism significantly elevates feature representation, while L2 regularization ensures robust generalization. Extensive experiments validate the models superiority in precision, recall, and F1 score, highlighting its effectiveness in differentiating monkeypox lesions in diverse and complex cases. The study not only provides insights into the application of advanced CNN architectures in medical diagnostics but also opens avenues for further research in model optimization and hyperparameter tuning for enhanced disease recognition. https://github.com/jzc777/SE-inceptionV3-L2
- Abstract(参考訳): サルポックスの世界的な普及に伴い、正確な疾患認識が重要になっている。
本研究はSE-InceptionV3モデルを改良し,SENetモジュールを組み込み,インセプションV3フレームワークにL2正規化を組み込むことでサルポックス病の検出を向上する。
サルポックスと類似した皮膚条件の画像を含むKaggleMonkeypoxデータセットを用いて、テストセット上で96.71%の精度を示し、従来の手法やディープラーニングモデルよりも優れていた。
SENetモジュールのアテンション機構は特徴表現を著しく高め、L2正規化は堅牢な一般化を保証する。
広範囲にわたる実験は、モデルの精度、リコール、F1スコアにおける優越性を検証し、多種多様な複雑な症例におけるサルポックス病変の鑑別における効果を強調した。
この研究は、医学診断における先進的なCNNアーキテクチャの適用に関する洞察を提供するだけでなく、モデル最適化と高パラメータチューニングのさらなる研究の道を開く。
https://github.com/jzc777/SE-inceptionV3-L2
関連論文リスト
- Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
本研究は、変性眼疾患である角膜症(keratoconus)の診断のために、訓練済みの8つのCNNを比較した。
MobileNetV2は角膜と正常な症例を誤分類の少ない場合に最も正確なモデルであった。
論文 参考訳(メタデータ) (2024-08-16T20:15:24Z) - Attention Based Feature Fusion Network for Monkeypox Skin Lesion Detection [0.09642500063568188]
最近のサルポックスの流行は公衆衛生に重大な懸念をもたらしている。
深層学習アルゴリズムは、新型コロナウイルス(COVID-19)を含む病気の特定に利用できる。
本稿では,ヒトサルポックス病を分類するために,事前学習した2つのアーキテクチャをマージする軽量モデルを提案する。
論文 参考訳(メタデータ) (2024-08-13T05:21:03Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - Transfer learning and Local interpretable model agnostic based visual
approach in Monkeypox Disease Detection and Classification: A Deep Learning
insights [0.0]
近年のサルポックス病は、世界がまだコロナウイルス病2019(COVID-19)と戦っているときに、世界的なパンデミックの脅威となる。
我々は、VGG16、InceptionResNetV2、ResNet50、ResNet101、MobileNetV2、VGG19を用いたトランスファー学習アプローチの6つの異なるディープラーニングモデルの修正とテストを行った。
予備計算の結果,改良型InceptionResNetV2モデルとMobileNetV2モデルは,93%から99%の精度で高い性能を示した。
論文 参考訳(メタデータ) (2022-11-01T18:07:34Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Monkeypox Skin Lesion Detection Using Deep Learning Models: A
Feasibility Study [1.9395755884693817]
最近のサルポックスの流行は、アフリカ以外の40カ国で急速に拡大しているため、公衆衛生上の問題となっている。
サルポックス病変のコンピュータによる検出は, 疑われる症例の迅速同定と監視に有用であると考えられた。
深層学習法は皮膚病変の自動検出に有効である。
論文 参考訳(メタデータ) (2022-07-06T09:09:28Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
教師なし異常検出は、通常のデータのみをトレーニングすることで、目に見えない異常を検出するモデルを構築することを目的としている。
本稿では,これらの課題に対処するために,自己教師付き学習(AMSL)を用いた適応記憶ネットワーク(Adaptive Memory Network)を提案する。
AMSLには、一般的な正規パターンを学ぶための自己教師付き学習モジュールと、リッチな特徴表現を学ぶための適応型メモリ融合モジュールが組み込まれている。
論文 参考訳(メタデータ) (2022-01-03T03:40:21Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。