論文の概要: A Cascaded Dilated Convolution Approach for Mpox Lesion Classification
- arxiv url: http://arxiv.org/abs/2412.10106v4
- Date: Tue, 14 Jan 2025 03:43:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:15.550994
- Title: A Cascaded Dilated Convolution Approach for Mpox Lesion Classification
- Title(参考訳): Mpox 病変分類のためのカスケード型拡張畳み込み法
- Authors: Ayush Deshmukh,
- Abstract要約: Mpoxウイルスは、他の皮膚疾患と視覚的に類似しているため、重要な診断上の課題を呈する。
深層学習に基づく皮膚病変分類のアプローチは、有望な代替手段を提供する。
本稿では,これらの課題に対処するためのCascaded Atrous Group Attentionフレームワークを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The global outbreak of the Mpox virus, classified as a Public Health Emergency of International Concern (PHEIC) by the World Health Organization, presents significant diagnostic challenges due to its visual similarity to other skin lesion diseases. Traditional diagnostic methods for Mpox, which rely on clinical symptoms and laboratory tests, are slow and labor intensive. Deep learning-based approaches for skin lesion classification offer a promising alternative. However, developing a model that balances efficiency with accuracy is crucial to ensure reliable and timely diagnosis without compromising performance. This study introduces the Cascaded Atrous Group Attention (CAGA) framework to address these challenges, combining the Cascaded Atrous Attention module and the Cascaded Group Attention mechanism. The Cascaded Atrous Attention module utilizes dilated convolutions and cascades the outputs to enhance multi-scale representation. This is integrated into the Cascaded Group Attention mechanism, which reduces redundancy in Multi-Head Self-Attention. By integrating the Cascaded Atrous Group Attention module with EfficientViT-L1 as the backbone architecture, this approach achieves state-of-the-art performance, reaching an accuracy of 98% on the Mpox Close Skin Image (MCSI) dataset while reducing model parameters by 37.5% compared to the original EfficientViT-L1. The model's robustness is demonstrated through extensive validation on two additional benchmark datasets, where it consistently outperforms existing approaches.
- Abstract(参考訳): 世界保健機関(WHO)による公衆衛生緊急事態(PHEIC)に分類されるMpoxウイルスの世界的な流行は、他の皮膚疾患と視覚的に類似していることから、重要な診断上の課題を呈している。
Mpoxの従来の診断方法は、臨床症状や検査に頼っているが、遅く、労働集約的である。
深層学習に基づく皮膚病変分類のアプローチは、有望な代替手段を提供する。
しかし,効率と精度のバランスをとるモデルの開発は,性能を損なうことなく信頼性とタイムリーな診断を確実にする上で重要である。
本研究では,Cascaded Atrous Group Attention(CAGA)フレームワークを導入し,Cascaded Atrous AttentionモジュールとCascaded Group Attentionメカニズムを組み合わせる。
Cascaded Atrous Attentionモジュールは拡張畳み込みを利用して出力をカスケードしてマルチスケール表現を強化する。
これはカスケードグループ注意機構に統合され、マルチヘッド・セルフ・アテンションにおける冗長性を減少させる。
Cascaded Atrous Group AttentionモジュールとEfficientViT-L1をバックボーンアーキテクチャとして統合することにより、Mpox Close Skin Image (MCSI)データセットで98%の精度を実現し、オリジナルのEfficientViT-L1と比較してモデルパラメータを37.5%削減する。
このモデルの堅牢性は、既存のアプローチを一貫して上回る2つのベンチマークデータセットに対する広範な検証を通じて実証されている。
関連論文リスト
- EfficientNet with Hybrid Attention Mechanisms for Enhanced Breast Histopathology Classification: A Comprehensive Approach [0.0]
本稿では,ハイブリット・エフィシエント・ネットモデルと高度な注意機構を統合し,特徴抽出を強化し,重要な画像領域に焦点を当てた新しいアプローチを提案する。
利用可能な病理組織学データセットを用いて,複数の拡大スケールでモデルの性能を評価する。
その結果, 精度, F1スコア, 精度, リコールなどの指標を用いて評価し, 診断精度を向上させる上での本モデルの有効性を実証した。
論文 参考訳(メタデータ) (2024-10-29T17:56:05Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
本稿では,適応親和性に基づく蒸留とカーネルベースの蒸留をシームレスに組み合わせた,新しい関係に基づく知識フレームワークを提案する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
論文 参考訳(メタデータ) (2024-04-03T13:35:51Z) - Spatial-aware Transformer-GRU Framework for Enhanced Glaucoma Diagnosis
from 3D OCT Imaging [1.8416014644193066]
本稿では3次元光コヒーレンス・トモグラフィー(OCT)画像の診断値を利用した新しいディープラーニングフレームワークを提案する。
我々は、リッチスライスな特徴抽出のための網膜データに事前学習された視覚変換器と、スライス間空間依存性をキャプチャするための双方向Gated Recurrent Unitを統合する。
大規模データセットに対する実験結果から,提案手法の最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-08T22:25:15Z) - OCT-SelfNet: A Self-Supervised Framework with Multi-Modal Datasets for
Generalized and Robust Retinal Disease Detection [2.3349787245442966]
本研究は、眼疾患を検出するための自己教師付き堅牢な機械学習フレームワークであるOCT-SelfNetに貢献する。
本手法は,自己指導型事前学習と教師型微調整を組み合わせた2段階学習手法を用いてこの問題に対処する。
AUC-PR測定では,提案手法は42%を超え,ベースラインに比べて10%以上の性能向上を示した。
論文 参考訳(メタデータ) (2024-01-22T20:17:14Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - LDMRes-Net: Enabling Efficient Medical Image Segmentation on IoT and
Edge Platforms [9.626726110488386]
本稿では,IoTおよびエッジプラットフォーム上での医用画像のセグメンテーションに適した,軽量なデュアルマルチスケール残差ブロック型ニューラルネットワークを提案する。
LDMRes-Netは、非常に少ない学習可能なパラメータ(0.072M)で制限を克服し、リソース制約のあるデバイスに非常に適している。
論文 参考訳(メタデータ) (2023-06-09T10:34:18Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。