論文の概要: A Hybrid SNN-ANN Network for Event-based Object Detection with Spatial and Temporal Attention
- arxiv url: http://arxiv.org/abs/2403.10173v1
- Date: Fri, 15 Mar 2024 10:28:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 17:40:24.173091
- Title: A Hybrid SNN-ANN Network for Event-based Object Detection with Spatial and Temporal Attention
- Title(参考訳): 空間的・時間的注意を伴うイベントベース物体検出のためのハイブリッドSNN-ANNネットワーク
- Authors: Soikat Hasan Ahmed, Jan Finkbeiner, Emre Neftci,
- Abstract要約: イベントカメラは、時間分解能が高く、動きのぼやけが少ないダイナミックレンジを提供し、オブジェクト検出タスクを約束する。
Spiking Neural Networks(SNN)はイベントベースの知覚データに自然に一致するが、Artificial Neural Networks(ANN)はより安定したトレーニングダイナミクスを表示する傾向がある。
イベントカメラを用いたオブジェクト検出のための,最初のハイブリッドアテンションベースのSNN-ANNバックボーンを提案する。
- 参考スコア(独自算出の注目度): 2.5075774828443467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for object detection tasks. While Spiking Neural Networks (SNNs) are a natural match for event-based sensory data and enable ultra-energy efficient and low latency inference on neuromorphic hardware, Artificial Neural Networks (ANNs) tend to display more stable training dynamics and faster convergence resulting in greater task performance. Hybrid SNN-ANN approaches are a promising alternative, enabling to leverage the strengths of both SNN and ANN architectures. In this work, we introduce the first Hybrid Attention-based SNN-ANN backbone for object detection using event cameras. We propose a novel Attention-based SNN-ANN bridge module to capture sparse spatial and temporal relations from the SNN layer and convert them into dense feature maps for the ANN part of the backbone. Experimental results demonstrate that our proposed method surpasses baseline hybrid and SNN-based approaches by significant margins, with results comparable to existing ANN-based methods. Extensive ablation studies confirm the effectiveness of our proposed modules and architectural choices. These results pave the way toward a hybrid SNN-ANN architecture that achieves ANN like performance at a drastically reduced parameter budget. We implemented the SNN blocks on digital neuromorphic hardware to investigate latency and power consumption and demonstrate the feasibility of our approach.
- Abstract(参考訳): イベントカメラは、時間分解能が高く、動きのぼやけが少ないダイナミックレンジを提供し、オブジェクト検出タスクを約束する。
Spiking Neural Networks(SNN)は、イベントベースの知覚データと自然に一致し、ニューロモルフィックハードウェア上で超高効率で低レイテンシな推論を可能にする一方で、Artificial Neural Networks(ANN)はより安定したトレーニングダイナミックスを示し、より高速な収束によってタスクパフォーマンスが向上する傾向にある。
ハイブリッドSNN-ANNアプローチは有望な代替手段であり、SNNとANNアーキテクチャの長所を活用できる。
本研究では,イベントカメラを用いたオブジェクト検出のためのハイブリッドアテンションベースのSNN-ANNバックボーンを提案する。
本研究では,SNN層から疎空間的・時間的関係を捕捉し,それらを背骨のANN部分の高密度特徴写像に変換するための新しいアテンションベースのSNN-ANNブリッジモジュールを提案する。
実験の結果,提案手法はベースラインハイブリッドとSNNベースのアプローチをはるかに上回り,既存のANN方式に匹敵する結果が得られた。
大規模なアブレーション研究は,提案したモジュールの有効性と設計上の選択を裏付けるものである。
これらの結果は,パラメータ予算を大幅に削減したANNのような性能を実現するハイブリッドSNN-ANNアーキテクチャへの道を開いた。
我々は,SNNブロックをデジタルニューロモルフィックハードウェアに実装し,レイテンシと消費電力を調査し,本手法の有効性を実証した。
関連論文リスト
- ReSpike: Residual Frames-based Hybrid Spiking Neural Networks for Efficient Action Recognition [26.7175155847563]
スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワーク(ANN)に代わる、魅力的なエネルギー効率の高い代替手段として登場した。
本稿では,ANNとSNNの強みを相乗化するハイブリッドフレームワークReSpikeを提案する。
論文 参考訳(メタデータ) (2024-09-03T03:01:25Z) - NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - Towards Efficient Deployment of Hybrid SNNs on Neuromorphic and Edge AI Hardware [0.493599216374976]
本稿では,ニューロモルフィックとエッジコンピューティングの相乗的ポテンシャルを考察し,動的視覚センサが捉えたデータ処理に適した多目的機械学習(ML)システムを構築する。
我々は、PyTorchとLavaフレームワークを使用して、スパイキングニューラルネットワーク(SNN)と人工ニューラルネットワーク(ANN)を混合してハイブリッドモデルを構築し、訓練する。
論文 参考訳(メタデータ) (2024-07-11T17:40:39Z) - Highly Efficient SNNs for High-speed Object Detection [7.3074002563489024]
実験結果から, 物体検出タスクにおいて, 1.5MBのパラメータしか持たないGPU上で, 効率的なSNNが118倍の高速化を実現できることが示唆された。
FPGAプラットフォーム上でのSNNをさらに検証し,800以上のFPSオブジェクトを極めて低レイテンシで検出できるモデルを提案する。
論文 参考訳(メタデータ) (2023-09-27T10:31:12Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - SNN2ANN: A Fast and Memory-Efficient Training Framework for Spiking
Neural Networks [117.56823277328803]
スパイクニューラルネットワークは、低消費電力環境における効率的な計算モデルである。
本稿では,SNNを高速かつメモリ効率で学習するためのSNN-to-ANN(SNN2ANN)フレームワークを提案する。
実験結果から,SNN2ANNをベースとしたモデルがベンチマークデータセットで良好に動作することが示された。
論文 参考訳(メタデータ) (2022-06-19T16:52:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Beyond Classification: Directly Training Spiking Neural Networks for
Semantic Segmentation [5.800785186389827]
ニューラルネットワークの低消費電力代替としてスパイキングニューラルネットワーク(SNN)が登場している。
本稿では,ニューロンをスパイクしたセマンティックセグメンテーションネットワークの分類を超えて,SNNの応用について検討する。
論文 参考訳(メタデータ) (2021-10-14T21:53:03Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNNは、視覚オブジェクト追跡ベンチマークであるTB2013, VOT2016, GOT-10kにおいて、短いレイテンシと低い精度の損失を達成する最初のディープSNNトラッカーである。
SiamSNNは、ニューロモルフィックチップTrueNorth上で低エネルギー消費とリアルタイムを実現する。
論文 参考訳(メタデータ) (2020-03-17T08:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。