論文の概要: Highly Efficient SNNs for High-speed Object Detection
- arxiv url: http://arxiv.org/abs/2309.15883v1
- Date: Wed, 27 Sep 2023 10:31:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 19:30:54.662220
- Title: Highly Efficient SNNs for High-speed Object Detection
- Title(参考訳): 高速物体検出のための高効率SNN
- Authors: Nemin Qiu and Zhiguo Li and Yuan Li and Chuang Zhu
- Abstract要約: 実験結果から, 物体検出タスクにおいて, 1.5MBのパラメータしか持たないGPU上で, 効率的なSNNが118倍の高速化を実現できることが示唆された。
FPGAプラットフォーム上でのSNNをさらに検証し,800以上のFPSオブジェクトを極めて低レイテンシで検出できるモデルを提案する。
- 参考スコア(独自算出の注目度): 7.3074002563489024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The high biological properties and low energy consumption of Spiking Neural
Networks (SNNs) have brought much attention in recent years. However, the
converted SNNs generally need large time steps to achieve satisfactory
performance, which will result in high inference latency and computational
resources increase. In this work, we propose a highly efficient and fast SNN
for object detection. First, we build an initial compact ANN by using
quantization training method of convolution layer fold batch normalization
layer and neural network modification. Second, we theoretically analyze how to
obtain the low complexity SNN correctly. Then, we propose a scale-aware
pseudoquantization scheme to guarantee the correctness of the compact ANN to
SNN. Third, we propose a continuous inference scheme by using a Feed-Forward
Integrate-and-Fire (FewdIF) neuron to realize high-speed object detection.
Experimental results show that our efficient SNN can achieve 118X speedup on
GPU with only 1.5MB parameters for object detection tasks. We further verify
our SNN on FPGA platform and the proposed model can achieve 800+FPS object
detection with extremely low latency.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)の高生物学的特性と低エネルギー消費が近年注目を集めている。
しかし、変換されたSNNは通常、十分な性能を達成するために大きな時間ステップを必要とし、高い推論遅延と計算資源の増加をもたらす。
本研究では,オブジェクト検出のための高速かつ高効率なSNNを提案する。
まず,畳み込み層折り畳み型バッチ正規化層の量子化学習法とニューラルネットワーク修正を用いて,初期コンパクトANNを構築する。
第2に,低複雑性SNNを正確に取得する方法を理論的に分析する。
そこで我々は,コンパクトANNのSNNに対する正当性を保証するために,スケールアウェアな擬似量子化方式を提案する。
第3に,フィードフォワード・インテグレート・アンド・ファイア(fewdif)ニューロンを用いて高速物体検出を実現する連続的推論手法を提案する。
実験結果から,SNNは物体検出タスクの1.5MBパラメータのみでGPU上で118倍の高速化を実現することができた。
FPGAプラットフォーム上でのSNNをさらに検証し,800以上のFPSオブジェクトを極めて低レイテンシで検出できるモデルを提案する。
関連論文リスト
- A Hybrid SNN-ANN Network for Event-based Object Detection with Spatial and Temporal Attention [2.5075774828443467]
イベントカメラは、時間分解能が高く、動きのぼやけが少ないダイナミックレンジを提供し、オブジェクト検出タスクを約束する。
Spiking Neural Networks(SNN)はイベントベースの知覚データに自然に一致するが、Artificial Neural Networks(ANN)はより安定したトレーニングダイナミクスを表示する傾向がある。
イベントカメラを用いたオブジェクト検出のための,最初のハイブリッドアテンションベースのSNN-ANNバックボーンを提案する。
論文 参考訳(メタデータ) (2024-03-15T10:28:31Z) - Low Latency of object detection for spikng neural network [3.404826786562694]
スパイキングニューラルネットワークは、バイナリスパイクの性質のため、エッジAIアプリケーションに適している。
本稿では,オブジェクト検出に特化して,高精度で低遅延なSNNを生成することに焦点を当てる。
論文 参考訳(メタデータ) (2023-09-27T10:26:19Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
量子ニューラルネットワーク(QNN)は、量子スピードアップを達成するために古典的ニューラルネットワークの一般化として提案されている。
QNNのトレーニングには、入力キュービット数に指数関数的に勾配速度がなくなるため、非常に大きなボトルネックが存在する。
木テンソルとステップ制御された構造を持つQNNを二分分類に適用し,ランダムな構造を持つQNNと比較してより高速な収束率と精度を示す。
論文 参考訳(メタデータ) (2020-11-12T08:32:04Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z) - SiamSNN: Siamese Spiking Neural Networks for Energy-Efficient Object
Tracking [20.595208488431766]
SiamSNNは、視覚オブジェクト追跡ベンチマークであるTB2013, VOT2016, GOT-10kにおいて、短いレイテンシと低い精度の損失を達成する最初のディープSNNトラッカーである。
SiamSNNは、ニューロモルフィックチップTrueNorth上で低エネルギー消費とリアルタイムを実現する。
論文 参考訳(メタデータ) (2020-03-17T08:49:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。