Thermal Image Super-Resolution Using Second-Order Channel Attention with
Varying Receptive Fields
- URL: http://arxiv.org/abs/2108.00094v1
- Date: Fri, 30 Jul 2021 22:17:51 GMT
- Title: Thermal Image Super-Resolution Using Second-Order Channel Attention with
Varying Receptive Fields
- Authors: Nolan B. Gutierrez, William J. Beksi
- Abstract summary: We introduce a system to efficiently reconstruct thermal images.
The restoration of thermal images is critical for applications that involve safety, search and rescue, and military operations.
- Score: 4.991042925292453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Thermal images model the long-infrared range of the electromagnetic spectrum
and provide meaningful information even when there is no visible illumination.
Yet, unlike imagery that represents radiation from the visible continuum,
infrared images are inherently low-resolution due to hardware constraints. The
restoration of thermal images is critical for applications that involve safety,
search and rescue, and military operations. In this paper, we introduce a
system to efficiently reconstruct thermal images. Specifically, we explore how
to effectively attend to contrasting receptive fields (RFs) where increasing
the RFs of a network can be computationally expensive. For this purpose, we
introduce a deep attention to varying receptive fields network (AVRFN). We
supply a gated convolutional layer with higher-order information extracted from
disparate RFs, whereby an RF is parameterized by a dilation rate. In this way,
the dilation rate can be tuned to use fewer parameters thus increasing the
efficacy of AVRFN. Our experimental results show an improvement over the state
of the art when compared against competing thermal image super-resolution
methods.
Related papers
- ThermalNeRF: Thermal Radiance Fields [32.881758519242155]
We propose a unified framework for scene reconstruction from a set of LWIR and RGB images.
We calibrate the RGB and infrared cameras with respect to each other, as a preprocessing step.
We show that our method is capable of thermal super-resolution, as well as visually removing obstacles to reveal objects occluded in either the RGB or thermal channels.
arXiv Detail & Related papers (2024-07-22T02:51:29Z) - PID: Physics-Informed Diffusion Model for Infrared Image Generation [11.416759828137701]
Infrared imaging technology has gained significant attention for its reliable sensing ability in low visibility conditions.
Most existing image translation methods treat infrared images as a stylistic variation, neglecting the underlying physical laws.
We propose a Physics-Informed Diffusion (PID) model for translating RGB images to infrared images that adhere to physical laws.
arXiv Detail & Related papers (2024-07-12T14:32:30Z) - NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - SwinFuSR: an image fusion-inspired model for RGB-guided thermal image super-resolution [0.16385815610837165]
Super-resolution (SR) methods often struggle with thermal images due to lack of high-frequency details.
Inspired by SwinFusion, we propose SwinFuSR, a guided SR architecture based on Swin transformers.
Our method has few parameters and outperforms state of the art models in terms of Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM)
arXiv Detail & Related papers (2024-04-22T19:01:18Z) - Thermal-NeRF: Neural Radiance Fields from an Infrared Camera [29.58060552299745]
We introduce Thermal-NeRF, the first method that estimates a volumetric scene representation in the form of a NeRF solely from IR imaging.
We conduct extensive experiments to demonstrate that Thermal-NeRF can achieve superior quality compared to existing methods.
arXiv Detail & Related papers (2024-03-15T14:27:15Z) - Efficient View Synthesis with Neural Radiance Distribution Field [61.22920276806721]
We propose a new representation called Neural Radiance Distribution Field (NeRDF) that targets efficient view synthesis in real-time.
We use a small network similar to NeRF while preserving the rendering speed with a single network forwarding per pixel as in NeLF.
Experiments show that our proposed method offers a better trade-off among speed, quality, and network size than existing methods.
arXiv Detail & Related papers (2023-08-22T02:23:28Z) - Enhancing Low-Light Images Using Infrared-Encoded Images [81.8710581927427]
Previous arts mainly focus on the low-light images captured in the visible spectrum using pixel-wise loss.
We propose a novel approach to increase the visibility of images captured under low-light environments by removing the in-camera infrared (IR) cut-off filter.
arXiv Detail & Related papers (2023-07-09T08:29:19Z) - Multi-Space Neural Radiance Fields [74.46513422075438]
Existing Neural Radiance Fields (NeRF) methods suffer from the existence of reflective objects.
We propose a multi-space neural radiance field (MS-NeRF) that represents the scene using a group of feature fields in parallel sub-spaces.
Our approach significantly outperforms the existing single-space NeRF methods for rendering high-quality scenes.
arXiv Detail & Related papers (2023-05-07T13:11:07Z) - Unsupervised Misaligned Infrared and Visible Image Fusion via
Cross-Modality Image Generation and Registration [59.02821429555375]
We present a robust cross-modality generation-registration paradigm for unsupervised misaligned infrared and visible image fusion.
To better fuse the registered infrared images and visible images, we present a feature Interaction Fusion Module (IFM)
arXiv Detail & Related papers (2022-05-24T07:51:57Z) - Photothermal-SR-Net: A Customized Deep Unfolding Neural Network for
Photothermal Super Resolution Imaging [9.160910754837756]
Photothermal-SR-Net is proposed in this paper, which performs deconvolution by deep unfolding considering the underlying physics.
Photothermal-SR-Net applies trained block-sparsity thresholding to the acquired thermal images in each convolutional layer.
arXiv Detail & Related papers (2021-04-21T14:41:04Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.