論文の概要: Unveiling Wash Trading in Popular NFT Markets
- arxiv url: http://arxiv.org/abs/2403.10361v1
- Date: Fri, 15 Mar 2024 14:52:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 16:41:56.952353
- Title: Unveiling Wash Trading in Popular NFT Markets
- Title(参考訳): 人気NFT市場におけるウォッシュトレーディングの展開
- Authors: Yuanzheng Niu, Xiaoqi Li, Hongli Peng, Wenkai Li,
- Abstract要約: 4つの非偽造トークン(NFT)市場における2500万以上のトランザクションを分析します。
本稿では,トランザクションのネットワーク特性を行動解析と統合するアルゴリズムを提案する。
以上の結果から, インセンティブのあるNFT市場は, 洗剤取引量の割合が高いことが示唆された。
- 参考スコア(独自算出の注目度): 0.7529855084362796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As emerging digital assets, NFTs are susceptible to anomalous trading behaviors due to the lack of stringent regulatory mechanisms, potentially causing economic losses. In this paper, we conduct the first systematic analysis of four non-fungible tokens (NFT) markets. Specifically, we analyze more than 25 million transactions within these markets, to explore the evolution of wash trade activities. Furthermore, we propose a heuristic algorithm that integrates the network characteristics of transactions with behavioral analysis, to detect wash trading activities in NFT markets. Our findings indicate that NFT markets with incentivized structures exhibit higher proportions of wash trading volume compared to those without incentives. Notably, the LooksRare and X2Y2 markets are detected with wash trading volume proportions as high as 94.5% and 84.2%, respectively.
- Abstract(参考訳): 新興デジタル資産として、NFTは厳格な規制機構の欠如により異常な取引行動に陥り、経済的な損失をもたらす可能性がある。
本稿では,NFT(Non-fungible tokens)市場を最初に体系的に分析する。
具体的には、これらの市場における2500万件以上の取引を分析し、洗浄貿易活動の進化を探求する。
さらに,トランザクションのネットワーク特性と行動分析を統合したヒューリスティックなアルゴリズムを提案し,NFT市場における洗剤取引活動を検出する。
その結果, インセンティブのあるNFT市場は, インセンティブのない市場に比べて, 洗剤取引量の割合が高いことがわかった。
特に、LooksRareとX2Y2市場は、それぞれ94.5%と84.2%の洗剤取引量の割合で検出されている。
関連論文リスト
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - The Dark Side of NFTs: A Large-Scale Empirical Study of Wash Trading [28.20696034160891]
我々は,2,701,883 NFTから8,717,031の転送イベントと3,830,141のセールイベントを分析した。
NFTの3種類の洗剤取引を識別し,識別アルゴリズムを提案する。
また,マーケットプレース設計,収益性,NFTプロジェクト設計,支払トークン,ユーザ行動,NTTエコシステムといった6つの側面からの洞察も提供する。
論文 参考訳(メタデータ) (2023-12-19T19:29:24Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Abnormal Trading Detection in the NFT Market [1.7205106391379026]
NFT最大のマーケットプレースであるOpenSeaの取引額は2023年2月に3470億ドルに達した。
NFT市場はほとんど規制がなく、マネーロンダリング、詐欺、洗浄取引に関して大きな懸念がある。
業界全体の規制の欠如と、アマチュアトレーダーや小売投資家がNTT市場のかなりの部分を占めているという事実により、この市場は特に詐欺行為に弱い。
論文 参考訳(メタデータ) (2023-05-25T15:12:14Z) - Bubble or Not: Measurements, Analyses, and Findings on the Ethereum
ERC721 and ERC1155 Non-fungible Token Ecosystem [22.010657813215413]
NFTの時価総額は2021年に215億米ドルに達した。
2022年第2四半期のNFT市場の急激な下落は、NFT市場の目に見えるブームに疑問を呈している。
ブロックチェーン全体からデータを収集することにより、NFT生成グラフ、NFT転送グラフ、NFTホールドグラフという3つのグラフを構築し、NFTトレーダーを特徴付ける。
我々は,NFTの活性度と値の定量化のための新しい指標を提案し,インジケータとグラフ解析を組み合わせてバブルNFTを見つけるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-05T10:17:57Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
非Fungible Token(NFT)市場は2021年に爆発的に成長し、2022年1月には月間貿易額が60億ドルに達した。
ウォッシュトレーディングの可能性に関する懸念が浮かび上がっており、あるパーティがNFTを取引してそのボリュームを人為的に膨らませる市場操作の形式である。
洗濯物取引は全NFTコレクションの5.66%に影響し、総生産量は3,406,110,774ドルである。
論文 参考訳(メタデータ) (2022-12-02T15:03:35Z) - The Fungibility of Non-Fungible Tokens: A Quantitative Analysis of
ERC-721 Metadata [9.812718050900918]
NFT(Non-Fungible Tokens)は、最近まで高収益で投機的な市場で取引されてきた。
誤解の出現と市場のダウンタイムの持続は、NFTの価値を疑問視している。
このプロジェクトでは、貴重NFTが持つべき3つの特性について記述する。
論文 参考訳(メタデータ) (2022-09-29T02:33:31Z) - Macroscopic properties of buyer-seller networks in online marketplaces [55.41644538483948]
2010年から2021年の間にオンラインマーケットプレースで発生した2億2500万トランザクションを含む2つのデータセットを分析した。
オンラインマーケットプレースにおける取引は、言語、生涯、製品、規制、技術に大きな違いがあるにもかかわらず、非常に類似したパターンを示す。
論文 参考訳(メタデータ) (2021-12-16T18:00:47Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。