Diamond Micro-Chip for Quantum Microscopy
- URL: http://arxiv.org/abs/2403.10414v1
- Date: Fri, 15 Mar 2024 15:48:36 GMT
- Title: Diamond Micro-Chip for Quantum Microscopy
- Authors: Shahidul Asif, Hang Chen, Johannes Cremer, Shantam Ravan, Jeyson Tamara-Isaza, Saurabh Lamsal, Reza Ebadi, Yan Li, Ling-Jie Zhou, Cui-Zu Chang, John Q. Xiao, Amir Yacoby, Ronald L. Walsworth, Mark J. H. Ku,
- Abstract summary: The nitrogen vacancy (NV) center in diamond is an increasingly popular quantum sensor for microscopy of electrical current, magnetization, and spins.
We characterize a diamond micro-chip containing a (111)-oriented NV ensemble and demonstrate its utility for high-resolution quantum microscopy.
This work establishes the DMC's potential to expand the application of NV quantum microscopy in materials, device, geological, biomedical, and chemical sciences.
- Score: 5.888484009150695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The nitrogen vacancy (NV) center in diamond is an increasingly popular quantum sensor for microscopy of electrical current, magnetization, and spins. However, efficient NV-sample integration with a robust, high-quality interface remains an outstanding challenge to realize scalable, high-throughput microscopy. In this work, we characterize a diamond micro-chip (DMC) containing a (111)-oriented NV ensemble; and demonstrate its utility for high-resolution quantum microscopy. We perform strain imaging of the DMC and find minimal detrimental strain variation across a field-of-view of tens of micrometer. We find good ensemble NV spin coherence and optical properties in the DMC, suitable for sensitive magnetometry. We then use the DMC to demonstrate wide-field microscopy of electrical current, and show that diffraction-limited quantum microscopy can be achieved. We also demonstrate the deterministic transfer of DMCs with multiple materials of interest for next-generation electronics and spintronics. Lastly, we develop a polymer-based technique for DMC placement. This work establishes the DMC's potential to expand the application of NV quantum microscopy in materials, device, geological, biomedical, and chemical sciences.
Related papers
- Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
arXiv Detail & Related papers (2024-08-13T14:45:46Z) - Quantum Frequency Mixing using an NV Diamond Microscope [4.010160960688796]
We use quantum frequency mixing to generate wide-field magnetic images of test structures driven by alternating currents up to 70 MHz.
With further improvements, this approach could find utility in hyperspectral imaging for electronics power spectrum analysis, electronics diagnostics and troubleshooting, and quantum computing hardware validation.
arXiv Detail & Related papers (2024-07-09T16:46:00Z) - Quantum diamond microscopy with optimized magnetic field sensitivity and
sub-ms temporal resolution [0.0]
Quantum diamond magnetometers using lock-in detection have successfully detected weak bio-magnetic fields from neurons, a live mammalian muscle, and a live mouse heart.
This opens up the possibility of quantum diamond magnetometers visualizing microscopic distributions of the bio-magnetic fields.
arXiv Detail & Related papers (2023-01-14T08:14:38Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Microfluidic quantum sensing platform for lab-on-a-chip applications [0.0]
We present a fully integrated microfluidic platform for solid-state spin quantum sensors, such as the nitrogen-vacancy center in diamond.
Our work opens the door for novel chemical analysis capabilities within LOC devices with applications in electrochemistry, high throughput reaction screening, bioanalytics, organ-on-a-chip, or single-cell studies.
arXiv Detail & Related papers (2022-09-04T16:01:56Z) - Machine-learning-enhanced quantum sensors for accurate magnetic field
imaging [0.0]
Local detection of magnetic fields is crucial for characterizing nano- and micro-materials.
Diamond nanoparticles (nanodiamonds) offer an attractive opportunity to chieve high spatial resolution.
A physical model for such a randomly oriented nanodiamond ensemble (NDE) is available, but the complexity of actual experimental conditions still limits the accuracy of deducing magnetic fields.
Here, we demonstrate magnetic field imaging with high accuracy of 1.8 $mu$T combining NDE and machine learning without any physical models.
arXiv Detail & Related papers (2022-02-01T12:48:06Z) - Widefield quantum microscopy with nitrogen-vacancy centers in diamond:
strengths, limitations, and prospects [0.0]
A dense layer of nitrogen-vacancy centers near the surface of a diamond can be interrogated in a widefield optical microscope.
Technology has seen rapid development and demonstration of applications in various areas across condensed matter physics, geoscience and biology.
arXiv Detail & Related papers (2021-08-13T04:52:06Z) - High speed microcircuit and synthetic biosignal widefield imaging using
nitrogen vacancies in diamond [44.62475518267084]
We show how to image signals from a microscopic lithographically patterned circuit at the micrometer scale.
Using a new type of lock-in amplifier camera, we demonstrate sub-millisecond spatially resolved recovery of AC and pulsed electrical current signals.
Finally, we demonstrate as a proof of principle the recovery of synthetic signals replicating the exact form of signals in a biological neural network.
arXiv Detail & Related papers (2021-07-29T16:27:39Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.