論文の概要: Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression
- arxiv url: http://arxiv.org/abs/2402.14103v2
- Date: Tue, 25 Jun 2024 08:50:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 20:19:03.155887
- Title: Computational-Statistical Gaps for Improper Learning in Sparse Linear Regression
- Title(参考訳): 疎線形回帰における不適切な学習のための計算統計的ギャップ
- Authors: Rares-Darius Buhai, Jingqiu Ding, Stefan Tiegel,
- Abstract要約: 疎線形回帰の効率的な学習アルゴリズムは, 負のスパイクを持つスパースPCA問題を解くのに有効であることを示す。
我々は,低次および統計的クエリの低い境界を減らしたスパース問題に対して補う。
- 参考スコア(独自算出の注目度): 4.396860522241307
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study computational-statistical gaps for improper learning in sparse linear regression. More specifically, given $n$ samples from a $k$-sparse linear model in dimension $d$, we ask what is the minimum sample complexity to efficiently (in time polynomial in $d$, $k$, and $n$) find a potentially dense estimate for the regression vector that achieves non-trivial prediction error on the $n$ samples. Information-theoretically this can be achieved using $\Theta(k \log (d/k))$ samples. Yet, despite its prominence in the literature, there is no polynomial-time algorithm known to achieve the same guarantees using less than $\Theta(d)$ samples without additional restrictions on the model. Similarly, existing hardness results are either restricted to the proper setting, in which the estimate must be sparse as well, or only apply to specific algorithms. We give evidence that efficient algorithms for this task require at least (roughly) $\Omega(k^2)$ samples. In particular, we show that an improper learning algorithm for sparse linear regression can be used to solve sparse PCA problems (with a negative spike) in their Wishart form, in regimes in which efficient algorithms are widely believed to require at least $\Omega(k^2)$ samples. We complement our reduction with low-degree and statistical query lower bounds for the sparse PCA problems from which we reduce. Our hardness results apply to the (correlated) random design setting in which the covariates are drawn i.i.d. from a mean-zero Gaussian distribution with unknown covariance.
- Abstract(参考訳): 疎線形回帰における不適切な学習のための計算統計的ギャップについて検討する。
より具体的には、次元$d$の$k$スパース線型モデルから$n$のサンプルが与えられたとき、$d$、$k$および$n$の時間多項式において、$n$のサンプルの非自明な予測誤差を達成する回帰ベクトルに対して潜在的に高密度な推定を求める。
情報理論上、これは$\Theta(k \log (d/k))$サンプルを使って実現できる。
しかし、文学においてその優位性にもかかわらず、モデルに追加の制約を加えることなく$\Theta(d)$サンプルを使用して同じ保証を達成できることが知られている多項式時アルゴリズムは存在しない。
同様に、既存の硬度結果は適切な設定に制限され、見積もりもスパースでなければならないか、特定のアルゴリズムにのみ適用される。
このタスクの効率的なアルゴリズムには少なくとも(概して)$\Omega(k^2)$サンプルが必要であるという証拠を与える。
特に, 疎線形回帰のための不適切な学習アルゴリズムは, 少なくとも$\Omega(k^2)$のサンプルを必要とすると広く信じられているレジームにおいて, ウィッシュアート形式のスパースPCA問題を(負のスパイクで)解くのに有効であることを示す。
我々は, 少ないPCA問題に対して, 低次, 統計的クエリローバウンドを用いて, 低次, 統計的クエリローバウンドを補足する。
我々の硬さは、余変数が未知の共分散を持つ平均零ガウス分布から引き出される(関連する)ランダムな設計設定に適用できる。
関連論文リスト
- Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination [42.526664955704746]
本研究では,平均推定,PCA,線形回帰に着目したハマー汚染モデルにおけるスパース推定タスクについて検討する。
それぞれのタスクに対して、最適なエラー保証を備えた最初のサンプルと計算効率の良い頑健な推定器を与える。
技術レベルでは、スパース方式における新しい多次元フィルタリング法を開発し、他の応用を見出すことができる。
論文 参考訳(メタデータ) (2024-03-15T15:51:27Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
この問題に対する効率的なSQアルゴリズムは、少なくとも$Omega(d1/2/(maxp, epsilon)2)$. のサンプル複雑性を必要とする。
我々の下限は、この1/epsilon$に対する二次的依存は、効率的なアルゴリズムに固有のものであることを示唆している。
論文 参考訳(メタデータ) (2023-07-13T18:59:28Z) - Feature Adaptation for Sparse Linear Regression [20.923321050404827]
スパース線形回帰は高次元統計学における中心的な問題である。
少数の近似依存を許容するアルゴリズムを提供する。
我々のフレームワークは、疎線形回帰のためのより広範な機能適応のフレームワークに適合する。
論文 参考訳(メタデータ) (2023-05-26T12:53:13Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
本研究では,高次元スパース平均推定の問題点を,逆数外乱の$epsilon$-fractionの存在下で検討する。
我々のアルゴリズムは、サム・オブ・スクエア(Sum-of-Squares)ベースのアルゴリズムアプローチに従う。
論文 参考訳(メタデータ) (2022-06-07T16:49:54Z) - DP-PCA: Statistically Optimal and Differentially Private PCA [44.22319983246645]
DP-PCAは、両方の制限を克服するシングルパスアルゴリズムである。
準ガウスデータに対しては、$n=tilde O(d)$ であっても、ほぼ最適な統計的誤差率を提供する。
論文 参考訳(メタデータ) (2022-05-27T02:02:17Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
高次元におけるリストデコタブル平均推定の基本的な課題について検討する。
我々のアルゴリズムは、すべての$k = O(sqrtd) cup Omega(d)$に対して$widetildeO(ndk)$で実行されます。
我々のアルゴリズムの変種は、すべての$k$に対してランタイム$widetildeO(ndk)$を持ち、リカバリ保証の$O(sqrtlog k)$ Factorを犠牲にしている。
論文 参考訳(メタデータ) (2020-11-19T17:21:37Z) - Estimating Stochastic Linear Combination of Non-linear Regressions
Efficiently and Scalably [23.372021234032363]
サブサンプルサイズが大きくなると、推定誤差が過度に犠牲になることを示す。
私たちの知る限りでは、線形テキスト+確率モデルが保証される最初の研究です。
論文 参考訳(メタデータ) (2020-10-19T07:15:38Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
ktimes k$, rank-r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ sample。
我々は、$cal O(frackrepsilon2log2fracepsilon)$ sample, a number linear in the high dimension, and almost linear in the matrices, usually low, rank proofs.というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-30T19:10:32Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。