論文の概要: Stimulate the Potential of Robots via Competition
- arxiv url: http://arxiv.org/abs/2403.10487v1
- Date: Fri, 15 Mar 2024 17:21:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 16:01:36.226145
- Title: Stimulate the Potential of Robots via Competition
- Title(参考訳): 競争によるロボットの可能性
- Authors: Kangyao Huang, Di Guo, Xinyu Zhang, Xiangyang Ji, Huaping Liu,
- Abstract要約: 本稿では,個々のロボットが競技者から知識を得るのに役立つ,競争力のある学習フレームワークを提案する。
具体的には、競合相手間の競合情報を、有利な行動を学ぶための補助信号として導入する。
さらに,Multiagent-Race環境を構築し,競争環境において訓練されたロボットが,単一ロボット環境でのSoTAアルゴリズムで訓練されたロボットよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 60.69068909395984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is common for us to feel pressure in a competition environment, which arises from the desire to obtain success comparing with other individuals or opponents. Although we might get anxious under the pressure, it could also be a drive for us to stimulate our potentials to the best in order to keep up with others. Inspired by this, we propose a competitive learning framework which is able to help individual robot to acquire knowledge from the competition, fully stimulating its dynamics potential in the race. Specifically, the competition information among competitors is introduced as the additional auxiliary signal to learn advantaged actions. We further build a Multiagent-Race environment, and extensive experiments are conducted, demonstrating that robots trained in competitive environments outperform ones that are trained with SoTA algorithms in single robot environment.
- Abstract(参考訳): 競争環境においては,他者や相手と比較して成功を収めたいという願望から生じるプレッシャーを感じることが一般的である。
プレッシャーの下で不安になるかもしれませんが、他の人に追いつくために、私たちのポテンシャルを最善に刺激するきっかけになるかもしれません。
そこで本研究では,個々のロボットが競争から知識を得るのを支援するための,競争力のある学習フレームワークを提案する。
具体的には、競合相手間の競合情報を、有利な行動を学ぶための補助信号として導入する。
さらに,Multiagent-Race環境を構築し,競争環境において訓練されたロボットが,単一ロボット環境でのSoTAアルゴリズムで訓練されたロボットよりも優れていることを示す。
関連論文リスト
- CompeteAI: Understanding the Competition Dynamics in Large Language Model-based Agents [43.46476421809271]
大規模言語モデル(LLM)は、様々なタスクを完了させるエージェントとして広く使われている。
本稿ではエージェント間の競合を研究するための一般的な枠組みを提案する。
そして、GPT-4を用いて仮想街をシミュレートする現実的な競争環境を構築する。
論文 参考訳(メタデータ) (2023-10-26T16:06:20Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
脚付きロボットのアジリティを定量化するための障害物コースであるBarkourベンチマークを導入する。
犬の機敏性の競争に触発され、様々な障害と時間に基づくスコアリング機構から構成される。
ベンチマークに対処する2つの方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T02:49:43Z) - Adversarial joint attacks on legged robots [3.480626767752489]
深部強化学習によって訓練された脚付きロボットの関節におけるアクチュエータに対する敵攻撃について検討する。
本研究では,アクチュエータのトルク制御信号に対する逆方向の摂動が,ロボットの報酬を著しく低減し,歩行不安定を生じさせることを示す。
論文 参考訳(メタデータ) (2022-05-20T11:30:23Z) - Motivating Physical Activity via Competitive Human-Robot Interaction [31.478167639618604]
本プロジェクトは,身体運動やゲームなどの特定のシナリオにおいて,人間に挑戦できるロボットコンペティタを作ることによって,競争力のある人間-ロボットインタラクションの研究を動機付けることを目的としている。
我々は,反復的マルチエージェント強化学習によりロボットの競争相手を育成し,人間の競争相手に対して良好な性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-02-14T22:19:58Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
ロボット学習のためのプラットフォームとしてデュアルアーム設定を提案する。
このセットアップの潜在的なメリットと、追求できる課題と研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-10-15T12:51:57Z) - The Road to a Successful HRI: AI, Trust and ethicS-TRAITS [65.60507052509406]
本ワークショップの目的は,学界や産業の研究者に対して,人間とロボットの関係の学際性と学際性について議論する機会を提供することである。
論文 参考訳(メタデータ) (2021-03-23T16:52:12Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
本研究は、競合する社会的影響に基づく新しい学習メカニズムの提供に焦点を当てる。
本研究は,競争競合の概念に基づいて,これらのエージェントの評価を人的視点から変えられるかを検討することを目的とする。
論文 参考訳(メタデータ) (2020-11-02T21:54:18Z) - Learning Agile Locomotion via Adversarial Training [59.03007947334165]
本稿では,四足歩行ロボット(主人公)が他のロボット(敵)を追いかけるのを学習し,後者が逃げることを学習するマルチエージェント学習システムを提案する。
この敵対的なトレーニングプロセスは、アジャイルの振る舞いを促進するだけでなく、退屈な環境設計の努力を効果的に軽減します。
1つの敵のみを使用した以前の作品とは対照的に、異なる逃走戦略を専門とする敵のアンサンブルを訓練することは、主人公がアジリティを習得するために不可欠である。
論文 参考訳(メタデータ) (2020-08-03T01:20:37Z) - Competing Bandits: The Perils of Exploration Under Competition [119.39607854637798]
オンラインプラットフォーム上での探索と競争の相互作用について検討する。
私たちは、スタークコンペティションが企業に対して、低福祉につながる「欲張り」バンディットアルゴリズムにコミットするよう促すことに気付きました。
競争を弱めるための2つのチャンネルについて検討する。
論文 参考訳(メタデータ) (2020-07-20T14:19:08Z) - Imitation Learning Approach for AI Driving Olympics Trained on
Real-world and Simulation Data Simultaneously [3.1014707658956793]
AI Driving Olympics competitionでレーン追従チャレンジを解くための、私たちの勝利のアプローチについて説明する。
擬似学習アルゴリズムを用いて,シミュレーションと実世界の双方から収集したデータセットを用いて学習を行った。
論文 参考訳(メタデータ) (2020-07-07T14:48:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。