論文の概要: Data-Driven Safety Verification using Barrier Certificates and Matrix Zonotopes
- arxiv url: http://arxiv.org/abs/2504.01007v2
- Date: Mon, 14 Apr 2025 16:30:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:43:43.376186
- Title: Data-Driven Safety Verification using Barrier Certificates and Matrix Zonotopes
- Title(参考訳): Barrier Certificates と Matrix Zonotopes を用いたデータ駆動安全性検証
- Authors: Mohammed Adib Oumer, Amr Alanwar, Majid Zamani,
- Abstract要約: ノイズの多いデータから直接システムの安全性を検証するための,データ駆動型安全性検証フレームワークを提案する。
1つの信頼できないモデルを信頼するのではなく、観測されたデータと整合する一連のモデルを構築します。
このモデル集合は行列ゾノトープを用いてコンパクトに表現され、効率的な計算と不確実性の伝播を可能にする。
- 参考スコア(独自算出の注目度): 1.6078581568133972
- License:
- Abstract: Ensuring safety in cyber-physical systems (CPSs) is a critical challenge, especially when system models are difficult to obtain or cannot be fully trusted due to uncertainty, modeling errors, or environmental disturbances. Traditional model-based approaches rely on precise system dynamics, which may not be available in real-world scenarios. To address this, we propose a data-driven safety verification framework that leverages matrix zonotopes and barrier certificates to verify system safety directly from noisy data. Instead of trusting a single unreliable model, we construct a set of models that capture all possible system dynamics that align with the observed data, ensuring that the true system model is always contained within this set. This model set is compactly represented using matrix zonotopes, enabling efficient computation and propagation of uncertainty. By integrating this representation into a barrier certificate framework, we establish rigorous safety guarantees without requiring an explicit system model. Numerical experiments demonstrate the effectiveness of our approach in verifying safety for dynamical systems with unknown models, showcasing its potential for real-world CPS applications.
- Abstract(参考訳): サイバー物理システム(CPS)の安全性を確保することは、特にシステムモデルが不確実性、モデリングエラー、環境障害のために入手が困難または完全に信頼できない場合において重要な課題である。
従来のモデルベースのアプローチは、現実のシナリオでは利用できないような、正確なシステムダイナミクスに依存しています。
そこで本研究では,行列型ゾノトープとバリア認証を利用して,ノイズの多いデータからシステム安全性を直接検証する,データ駆動型安全性検証フレームワークを提案する。
1つの信頼できないモデルを信頼するのではなく、観測されたデータと整合する全ての可能なシステムダイナミクスをキャプチャする一連のモデルを構築し、真のシステムモデルが常にこのセットに含まれることを保証します。
このモデル集合は行列ゾノトープを用いてコンパクトに表現され、効率的な計算と不確実性の伝播を可能にする。
この表現をバリア認証フレームワークに統合することにより、明示的なシステムモデルを必要としない厳格な安全保証を確立する。
シミュレーション実験により,未知のモデルを持つ力学系の安全性を検証する手法の有効性を実証し,実世界のCPS応用の可能性を示した。
関連論文リスト
- What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings [0.24578723416255752]
問題を非現実的な仮定にシフトすることなく,スケーラブルな形式検証アルゴリズムを開発する。
問題を非現実的な仮定にシフトさせることなく,スケーラブルな形式検証アルゴリズムを開発するためには,バリア証明書の概念を用いる。
本稿では,2乗法最適化とガウス過程エンベロープを用いて効率よくプログラムを解く方法を示す。
論文 参考訳(メタデータ) (2024-03-15T17:32:02Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
本稿では,任意の参照ポリシーをラップした制御フィルタを提案する。
本手法は、トップダウンとエゴセントリックの両方のビュー設定を含むシミュレーション環境における2つの異なるビズモータ制御タスクに有効である。
論文 参考訳(メタデータ) (2023-01-27T22:28:19Z) - Statistical Safety and Robustness Guarantees for Feedback Motion
Planning of Unknown Underactuated Stochastic Systems [1.0323063834827415]
本研究では, 平均力学モデルを用いたサンプリングベースプランナを提案し, 学習外乱境界による閉ループ追従誤差を同時に有界化する。
この保証は,10次元四角形ロボットのシミュレーションや,クレージーフライ四角形ロボットとクリアパスジャカルロボットの現実世界でのシミュレーションにおいて,経験的安全性に変換されることを検証した。
論文 参考訳(メタデータ) (2022-12-13T19:38:39Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Learning Hybrid Control Barrier Functions from Data [66.37785052099423]
ハイブリッドシステムの安全な制御法則を得るための体系的なツールが欠如していることから,データから確実に安全な制御法則を学習するための最適化ベースのフレームワークを提案する。
特に、システムダイナミクスが知られており、安全なシステム動作を示すデータが利用可能であるような設定を仮定する。
論文 参考訳(メタデータ) (2020-11-08T23:55:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。