論文の概要: Generative Models and Connected and Automated Vehicles: A Survey in Exploring the Intersection of Transportation and AI
- arxiv url: http://arxiv.org/abs/2403.10559v1
- Date: Thu, 14 Mar 2024 06:51:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 23:05:08.897120
- Title: Generative Models and Connected and Automated Vehicles: A Survey in Exploring the Intersection of Transportation and AI
- Title(参考訳): ジェネレーティブモデルとコネクテッド・アンド・オートマチック・ビークル:交通とAIの交差点を探索する調査
- Authors: Dong Shu, Zhouyao Zhu,
- Abstract要約: 本報告は、CAV(Connected and Automated Vehicles)とジェネレーティブモデルの歴史と影響について考察する。
この研究は、CAVの文脈における生成モデルの適用に焦点を当て、この統合が自動運転車における予測モデリング、シミュレーション精度、意思決定プロセスをどのように強化するかを明らかにすることを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This report investigates the history and impact of Generative Models and Connected and Automated Vehicles (CAVs), two groundbreaking forces pushing progress in technology and transportation. By focusing on the application of generative models within the context of CAVs, the study aims to unravel how this integration could enhance predictive modeling, simulation accuracy, and decision-making processes in autonomous vehicles. This thesis discusses the benefits and challenges of integrating generative models and CAV technology in transportation. It aims to highlight the progress made, the remaining obstacles, and the potential for advancements in safety and innovation.
- Abstract(参考訳): 本報告では,技術と輸送の進歩を推し進める2つの画期的な力である,生成モデルと連結自動車両(CAV)の歴史と影響について検討する。
この研究は、CAVの文脈における生成モデルの適用に焦点を当て、この統合が自動運転車における予測モデリング、シミュレーション精度、意思決定プロセスをどのように強化するかを明らかにすることを目的としている。
本論では, 生産モデルとCAV技術を統合することのメリットと課題について論じる。
それは、達成された進歩、残りの障害、そして安全性とイノベーションの進歩の可能性を強調することを目的としています。
関連論文リスト
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
世界モデルとビデオ生成は、自動運転の領域において重要な技術である。
本稿では,この2つの技術の関係について検討する。
映像生成モデルと世界モデルとの相互作用を分析することにより,重要な課題と今後の研究方向性を明らかにする。
論文 参考訳(メタデータ) (2024-11-05T08:58:35Z) - Integration of Mixture of Experts and Multimodal Generative AI in Internet of Vehicles: A Survey [82.84057882105931]
ジェネレーティブAI(GAI)は、IoT(Internet of Vehicles)におけるインテリジェントモジュールの認知、推論、計画能力を高めることができる。
IoVにおけるGAI, MoE, およびそれらの相互作用応用の基礎を提示する。
我々はIoVにおけるMoEとGAIの統合の可能性について論じ、分散認識とモニタリング、協調的な意思決定と計画、生成モデリングとシミュレーションを含む。
論文 参考訳(メタデータ) (2024-04-25T06:22:21Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - World Models for Autonomous Driving: An Initial Survey [16.448614804069674]
将来の出来事を正確に予測し、その影響を評価する能力は、安全性と効率の両方において最重要である。
世界モデルは変革的なアプローチとして現れており、自律運転システムは大量のセンサーデータを合成し、解釈することができる。
本稿では,自律運転における世界モデルの現状と今後の展開について概説する。
論文 参考訳(メタデータ) (2024-03-05T03:23:55Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - Social Interaction-Aware Dynamical Models and Decision Making for
Autonomous Vehicles [20.123965317836106]
IAAD(Interaction-Aware Autonomous Driving)は、急速に成長する研究分野である。
それは、人間の道路利用者と安全かつ効率的に対話できる自動運転車の開発に焦点を当てている。
これは、自動運転車が人間の道路利用者の行動を理解し予測できることを要求するため、困難な作業である。
論文 参考訳(メタデータ) (2023-10-29T03:43:50Z) - GAIA-1: A Generative World Model for Autonomous Driving [9.578453700755318]
本稿では,現実的な運転シナリオを生成する生成的世界モデルであるGAIA-1(Generative AI for Autonomy)を紹介する。
我々のモデルからの創発的特性には、高レベルの構造やシーンダイナミクス、文脈認識、一般化、幾何学の理解などが含まれる。
論文 参考訳(メタデータ) (2023-09-29T09:20:37Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Augmented Driver Behavior Models for High-Fidelity Simulation Study of
Crash Detection Algorithms [2.064612766965483]
人力車と自動車の両方を含むハイブリッド輸送システムのシミュレーションプラットフォームを提案する。
我々は、人間の運転タスクを分解し、大規模な交通シナリオをシミュレートするためのモジュラーアプローチを提供する。
我々は、大きな駆動データセットを分析し、異なる駆動特性を最もよく記述する表現的パラメータを抽出する。
論文 参考訳(メタデータ) (2022-08-10T19:59:16Z) - AI in Smart Cities: Challenges and approaches to enable road vehicle
automation and smart traffic control [56.73750387509709]
SCCは、活動やユーティリティの自動化と最適化による効率向上を目指すデータ中心の社会を構想しています。
本稿では、SCCにおけるAIの視点を説明し、道路車両の自動化とスマート交通制御を可能にする交通で使用されるAIベースの技術の概要を示す。
論文 参考訳(メタデータ) (2021-04-07T14:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。