論文の概要: Integration of Mixture of Experts and Multimodal Generative AI in Internet of Vehicles: A Survey
- arxiv url: http://arxiv.org/abs/2404.16356v1
- Date: Thu, 25 Apr 2024 06:22:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:48:28.131141
- Title: Integration of Mixture of Experts and Multimodal Generative AI in Internet of Vehicles: A Survey
- Title(参考訳): 自動車インターネットにおけるエキスパートの混在とマルチモーダル生成AIの統合:サーベイ
- Authors: Minrui Xu, Dusit Niyato, Jiawen Kang, Zehui Xiong, Abbas Jamalipour, Yuguang Fang, Dong In Kim, Xuemin, Shen,
- Abstract要約: ジェネレーティブAI(GAI)は、IoT(Internet of Vehicles)におけるインテリジェントモジュールの認知、推論、計画能力を高めることができる。
IoVにおけるGAI, MoE, およびそれらの相互作用応用の基礎を提示する。
我々はIoVにおけるMoEとGAIの統合の可能性について論じ、分散認識とモニタリング、協調的な意思決定と計画、生成モデリングとシミュレーションを含む。
- 参考スコア(独自算出の注目度): 82.84057882105931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI (GAI) can enhance the cognitive, reasoning, and planning capabilities of intelligent modules in the Internet of Vehicles (IoV) by synthesizing augmented datasets, completing sensor data, and making sequential decisions. In addition, the mixture of experts (MoE) can enable the distributed and collaborative execution of AI models without performance degradation between connected vehicles. In this survey, we explore the integration of MoE and GAI to enable Artificial General Intelligence in IoV, which can enable the realization of full autonomy for IoV with minimal human supervision and applicability in a wide range of mobility scenarios, including environment monitoring, traffic management, and autonomous driving. In particular, we present the fundamentals of GAI, MoE, and their interplay applications in IoV. Furthermore, we discuss the potential integration of MoE and GAI in IoV, including distributed perception and monitoring, collaborative decision-making and planning, and generative modeling and simulation. Finally, we present several potential research directions for facilitating the integration.
- Abstract(参考訳): ジェネレーティブAI(GAI)は、拡張現実データセットを合成し、センサーデータを完成させ、シーケンシャルな決定を行うことで、車両のインターネット(IoV)におけるインテリジェントモジュールの認知、推論、計画能力を高めることができる。
さらに、専門家(MoE)の混在により、コネクテッドカー間での性能劣化なしに、AIモデルの分散的で協調的な実行が可能になる。
本調査では,環境監視,交通管理,自動運転など,幅広いモビリティシナリオにおいて,人間の監督と適用性が最小限に抑えられたIoVの完全自律化を実現するため,MoEとGAIの統合について検討する。
特に、IoVにおけるGAI、MoE、およびそれらの相互作用応用の基礎について述べる。
さらに、分散認識とモニタリング、協調的な意思決定と計画、生成モデリングとシミュレーションを含む、IoVにおけるMoEとGAIの統合の可能性についても論じる。
最後に、統合を容易にするためのいくつかの研究の方向性を示す。
関連論文リスト
- Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AIは、サイバースペースと物理空間のギャップを埋める、急速に進歩する分野だ。
VEANETでは、組み込まれたAIツインが車載AIアシスタントとして機能し、自律運転をサポートするさまざまなタスクを実行する。
論文 参考訳(メタデータ) (2024-10-02T02:20:42Z) - GenAI-powered Multi-Agent Paradigm for Smart Urban Mobility: Opportunities and Challenges for Integrating Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) with Intelligent Transportation Systems [10.310791311301962]
本稿では,大規模言語モデル (LLM) と新生検索・拡張生成技術 (RAG) の変換可能性について検討する。
本稿では,スマートモビリティサービスをインテリジェントかつ対話的に提供可能なマルチエージェントシステムの開発を目的とした概念的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T16:14:42Z) - From Generative AI to Generative Internet of Things: Fundamentals,
Framework, and Outlooks [82.964958051535]
生成人工知能(GAI)は、現実的なデータを生成し、高度な意思決定を促進する能力を持っている。
GAIを現代のモノのインターネット(IoT)に統合することによって、ジェネレーティブ・インターネット・オブ・モノ(GIoT)が登場し、社会の様々な側面に革命をもたらす大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-10-27T02:58:11Z) - Fostering new Vertical and Horizontal IoT Applications with Intelligence
Everywhere [8.208838459484676]
Intelligence Everywhereは、大量のデータストリームを運ぶIoTネットワークのシームレスな統合を前提としている。
本稿では,最先端の研究とインテリジェンス・エビデンス・エビデンス・フレームワークの原理について論じる。
また、水平IoTアプリケーションを開発するための新しい視点も導入している。
論文 参考訳(メタデータ) (2023-09-30T11:59:39Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Integrating Generative Artificial Intelligence in Intelligent Vehicle
Systems [4.724940029079736]
自動車産業がAIを徐々に統合するにつれ、生成的人工知能技術はユーザーインタラクションに革命をもたらす可能性を秘めている。
本稿では, 音声, 音声, 視覚, マルチモーダルインタラクションを重視した, 自動車分野における生成人工知能の現在の応用について概説する。
我々は、ドメイン適応性、アライメント、マルチモーダル統合など、将来の重要な研究分野について概説し、倫理に関する課題やリスクに対処する。
論文 参考訳(メタデータ) (2023-05-15T09:09:40Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
インターネット・オブ・センセーズ(IoS)は、すべてのヒト受容体に対する欠陥のないテレプレゼンススタイルのコミュニケーションを約束する。
我々は,新たなセマンティックコミュニケーションと人工知能(AI)/機械学習(ML)パラダイムがIoSユースケースの要件を満たす方法について詳しく述べる。
論文 参考訳(メタデータ) (2022-12-21T03:37:38Z) - SMASH: a Semantic-enabled Multi-agent Approach for Self-adaptation of
Human-centered IoT [0.8602553195689512]
本稿では、人間中心環境におけるIoTアプリケーションの自己適応のためのマルチエージェントアプローチであるSMASHを提案する。
SMASHエージェントは、BDIエージェントモデルに基づく4層アーキテクチャを備え、人間の価値観とゴール推論、計画、行動を統合する。
論文 参考訳(メタデータ) (2021-05-31T12:33:27Z) - Gateway Controller with Deep Sensing: Learning to be Autonomic in
Intelligent Internet of Things [0.0]
モノのインターネットは、ユビキタスセンシングを通じて未来のインターネットに革命をもたらす。
数十億のデバイスをデプロイすると推定される課題の1つは、膨大な量のデータを生み出すことだ。
本稿では,IoTゲートウェイにおける自律的管理,接続性,データ相互運用性に特化して設計された,コントローラソリューションとしてのアプローチを提案する。
論文 参考訳(メタデータ) (2020-09-18T06:22:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。