論文の概要: Reviewing AI's Role in Non-Muscle-Invasive Bladder Cancer Recurrence Prediction
- arxiv url: http://arxiv.org/abs/2403.10586v2
- Date: Mon, 16 Sep 2024 14:19:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 02:45:24.183004
- Title: Reviewing AI's Role in Non-Muscle-Invasive Bladder Cancer Recurrence Prediction
- Title(参考訳): 非腫瘍浸潤性膀胱癌再発予測におけるAIの役割
- Authors: Saram Abbas, Rishad Shafik, Naeem Soomro, Rakesh Heer, Kabita Adhikari,
- Abstract要約: 非筋浸潤性膀胱癌(NMIBC)は人体に重大な負担を課し、治療に最も費用がかかるがんの1つである。
NMIBCの再発を予測するための現在のツールは、しばしばリスクを過大評価し、精度が低いスコアシステムに依存している。
機械学習(ML)ベースの技術は、分子および臨床データを活用することでNMIBC再発を予測するための有望なアプローチとして登場した。
- 参考スコア(独自算出の注目度): 0.4369058206183195
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Notorious for its 70-80% recurrence rate, Non-muscle-invasive Bladder Cancer (NMIBC) imposes a significant human burden and is one of the costliest cancers to manage. Current tools for predicting NMIBC recurrence rely on scoring systems that often overestimate risk and have poor accuracy. This is where Machine learning (ML)-based techniques have emerged as a promising approach for predicting NMIBC recurrence by leveraging molecular and clinical data. This comprehensive review paper critically analyses ML-based frameworks for predicting NMIBC recurrence, focusing on their statistical robustness and algorithmic efficacy. We meticulously examine the strengths and weaknesses of each study, by focusing on various prediction tasks, data modalities, and ML models, highlighting their remarkable performance alongside inherent limitations. A diverse array of ML algorithms that leverage multimodal data spanning radiomics, clinical, histopathological, and genomic data, exhibit significant promise in accurately predicting NMIBC recurrence. However, the path to widespread adoption faces challenges concerning the generalisability and interpretability of models, emphasising the need for collaborative efforts, robust datasets, and the incorporation of cost-effectiveness. Our detailed categorisation and in-depth analysis illuminate the nuances, complexities, and contexts that influence real-world advancement and adoption of these AI-based techniques. This rigorous analysis equips researchers with a deeper understanding of the intricacies of the ML algorithms employed. Researchers can use these insights to refine approaches, address limitations, and boost generalisability of their ML models, ultimately leading to reduced healthcare costs and improved patient outcomes.
- Abstract(参考訳): 非筋浸潤性膀胱癌(NMIBC)は70-80%の再発率で知られており、人的負担が大きく、治療に最も費用がかかるがんの1つである。
NMIBCの再発を予測するための現在のツールは、しばしばリスクを過大評価し、精度が低いスコアシステムに依存している。
そこで機械学習(ML)ベースの技術が、分子および臨床データを活用することでNMIBCの再発を予測するための有望なアプローチとして登場した。
本論文は,NMIBCの再発予測のためのMLベースのフレームワークを,その統計的堅牢性とアルゴリズムの有効性に着目して批判的に分析する。
種々の予測タスク,データモダリティ,MLモデルに着目し,各研究の長所と短所を慎重に検討し,本質的な制約とともにその顕著な性能を強調した。
放射線、臨床、病理、ゲノムデータにまたがるマルチモーダルデータを利用するMLアルゴリズムの多種多様な配列は、NMIBCの再発を正確に予測する上で大きな可能性を秘めている。
しかし、広く普及する道は、モデルの一般化可能性と解釈可能性に関する課題に直面し、協調作業の必要性、堅牢なデータセット、費用対効果の確立を強調している。
我々の詳細な分類と詳細な分析は、これらのAIベースのテクニックの現実的な進歩と採用に影響を与えるニュアンス、複雑さ、コンテキストを照らします。
この厳密な分析により、研究者はMLアルゴリズムの複雑さを深く理解することができる。
研究者たちはこれらの洞察を使って、アプローチを洗練し、制限に対処し、MLモデルの一般性を高め、最終的に医療費の削減と患者の成果を改善することができる。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - IntelliCare: Improving Healthcare Analysis with Variance-Controlled Patient-Level Knowledge from Large Language Models [14.709233593021281]
LLM(Large Language Models)からの外部知識の統合は、医療予測を改善するための有望な道を示す。
我々は,LLMを活用して高品質な患者レベルの外部知識を提供する新しいフレームワークであるIntelliCareを提案する。
IntelliCareは患者のコホートを特定し、LCMの理解と生成を促進するためにタスク関連統計情報を利用する。
論文 参考訳(メタデータ) (2024-08-23T13:56:00Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
機械学習(ML)は、高度なアルゴリズムと臨床データを統合することで、医学的診断に革命をもたらした。
RFモデルは高次元データの処理において堅牢な性能を示す。
CNNは、がん検出において異常な精度を示している。
LSTMネットワークは、時間的データの解析に優れ、臨床劣化の正確な予測を提供する。
論文 参考訳(メタデータ) (2024-08-05T09:41:34Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
本研究では、時系列医療指標における心拍データの伝達を改善するための機械学習アルゴリズムの能力について検討する。
検討中の要因は、アルゴリズムの利用、対象とする疾患の種類、採用されるデータの種類、応用、評価指標などである。
論文 参考訳(メタデータ) (2023-10-25T20:28:22Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
本稿では,領域制約として臨床専門知識をシームレスに統合する革新的プロジェクションに基づく手法を提案する。
我々は、患者データの健全な範囲を規定する制約から補正されたデータの距離を測定する。
AUROCは0.865で、精度は0.922で、従来のMLモデルを上回る。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。