論文の概要: Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database
- arxiv url: http://arxiv.org/abs/2501.11720v1
- Date: Mon, 20 Jan 2025 20:06:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:14.399551
- Title: Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database
- Title(参考訳): SEERデータベースを用いた肝細胞癌肺転移の予測
- Authors: Jeff J. H. Kim, George R. Nahass, Yang Dai, Theja Tulabandhula,
- Abstract要約: 肝細胞癌(HCC)は、がん関連死亡の原因である。
HCCにおける肺転移の予測モデルは、範囲と臨床応用性に限られている。
本研究では,Surveillance, Epidemiology, End Results (SEER)データベースのデータを用いて,エンドツーエンドの機械学習パイプラインの開発と検証を行う。
- 参考スコア(独自算出の注目度): 0.9055332067000195
- License:
- Abstract: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, with lung metastases being the most common site of distant spread and significantly worsening prognosis. Despite the growing availability of clinical and demographic data, predictive models for lung metastasis in HCC remain limited in scope and clinical applicability. In this study, we develop and validate an end-to-end machine learning pipeline using data from the Surveillance, Epidemiology, and End Results (SEER) database. We evaluated three machine learning models (Random Forest, XGBoost, and Logistic Regression) alongside a multilayer perceptron (MLP) neural network. Our models achieved high AUROC values and recall, with the Random Forest and MLP models demonstrating the best overall performance (AUROC = 0.82). However, the low precision across models highlights the challenges of accurately predicting positive cases. To address these limitations, we developed a custom loss function incorporating recall optimization, enabling the MLP model to achieve the highest sensitivity. An ensemble approach further improved overall recall by leveraging the strengths of individual models. Feature importance analysis revealed key predictors such as surgery status, tumor staging, and follow up duration, emphasizing the relevance of clinical interventions and disease progression in metastasis prediction. While this study demonstrates the potential of machine learning for identifying high-risk patients, limitations include reliance on imbalanced datasets, incomplete feature annotations, and the low precision of predictions. Future work should leverage the expanding SEER dataset, improve data imputation techniques, and explore advanced pre-trained models to enhance predictive accuracy and clinical utility.
- Abstract(参考訳): 肝細胞癌 (HCC) は癌関連死亡の原因であり, 肺転移が最も多い部位であり, 予後が著しく悪化している。
臨床および人口統計データの増加にもかかわらず、HCCの肺転移予測モデルは、スコープと臨床応用性に制限されている。
本研究では,Surveillance, Epidemiology, End Results (SEER)データベースのデータを用いて,エンドツーエンドの機械学習パイプラインを開発し,検証する。
機械学習モデル(Random Forest, XGBoost, Logistic Regression)をMLP(Multilayer Perceptron)ニューラルネットワークとともに評価した。
我々のモデルは高いAUROC値とリコールを達成し、Random ForestとMLPモデルは最高の総合性能(AUROC = 0.82)を示した。
しかし、モデル全体の精度が低いことは、正のケースを正確に予測する上での課題を浮き彫りにしている。
これらの制約に対処するため、リコール最適化を取り入れたカスタム損失関数を開発し、MDPモデルが最も高い感度が得られるようにした。
アンサンブルアプローチは、個々のモデルの強みを活用することで、全体的なリコールをさらに改善した。
特徴的重要性分析では,転移予測における臨床介入と疾患進展との関連を強調し,手術状態,腫瘍転移,経過観察などの重要な予測因子が示唆された。
本研究は、リスクの高い患者を特定するための機械学習の可能性を示す一方で、不均衡なデータセットへの依存、不完全な特徴アノテーション、予測の精度の低さなどが制限されている。
今後は、SEERデータセットの拡大、データ計算技術の改善、予測精度と臨床的有用性を高めるための高度な事前学習モデルを探求する予定である。
関連論文リスト
- Predicting Lung Cancer Patient Prognosis with Large Language Models [20.97970447748789]
大規模言語モデル(LLM)は、広範な学習知識に基づいてテキストを処理・生成する能力に注目されている。
肺癌患者の予後予測におけるGPT-4o miniおよびGPT-3.5の有用性について検討した。
論文 参考訳(メタデータ) (2024-08-15T06:36:27Z) - Machine Learning Applications in Medical Prognostics: A Comprehensive Review [0.0]
機械学習(ML)は、高度なアルゴリズムと臨床データを統合することで、医学的診断に革命をもたらした。
RFモデルは高次元データの処理において堅牢な性能を示す。
CNNは、がん検出において異常な精度を示している。
LSTMネットワークは、時間的データの解析に優れ、臨床劣化の正確な予測を提供する。
論文 参考訳(メタデータ) (2024-08-05T09:41:34Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - A Machine Learning Challenge for Prognostic Modelling in Head and Neck
Cancer Using Multi-modal Data [0.10651507097431492]
我々は,頭頸部癌における生存予測の精度向上を目的として,機関的機械学習挑戦を行った。
画像と臨床データを用いて,12種類の提出物を別々に,あるいは組み合わせて比較した。
勝利アプローチは臨床データと腫瘍容積の非線形マルチタスク学習を用い、2年間の生存予測において高い予後精度を達成した。
論文 参考訳(メタデータ) (2021-01-28T11:20:34Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
本稿では,患者の予後と治療反応を予測するための統合型深層学習手法を提案する。
我々は,マルチモーダル非同期時系列分類タスクとして,確率モデリングを定式化する。
我々の予測モデルは、長期生存の観点から、低リスク、高リスクの患者をさらに階層化する可能性がある。
論文 参考訳(メタデータ) (2020-10-08T15:30:17Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。