Sequential Monte Carlo for Inclusive KL Minimization in Amortized Variational Inference
- URL: http://arxiv.org/abs/2403.10610v1
- Date: Fri, 15 Mar 2024 18:13:48 GMT
- Title: Sequential Monte Carlo for Inclusive KL Minimization in Amortized Variational Inference
- Authors: Declan McNamara, Jackson Loper, Jeffrey Regier,
- Abstract summary: We propose SMC-Wake, a procedure for fitting an amortized variational approximation that uses sequential Monte Carlo samplers to estimate the gradient of the inclusive KL divergence.
In experiments with both simulated and real datasets, SMC-Wake fits variational distributions that approximate the posterior more accurately than existing methods.
- Score: 3.126959812401426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For training an encoder network to perform amortized variational inference, the Kullback-Leibler (KL) divergence from the exact posterior to its approximation, known as the inclusive or forward KL, is an increasingly popular choice of variational objective due to the mass-covering property of its minimizer. However, minimizing this objective is challenging. A popular existing approach, Reweighted Wake-Sleep (RWS), suffers from heavily biased gradients and a circular pathology that results in highly concentrated variational distributions. As an alternative, we propose SMC-Wake, a procedure for fitting an amortized variational approximation that uses likelihood-tempered sequential Monte Carlo samplers to estimate the gradient of the inclusive KL divergence. We propose three gradient estimators, all of which are asymptotically unbiased in the number of iterations and two of which are strongly consistent. Our method interleaves stochastic gradient updates, SMC samplers, and iterative improvement to an estimate of the normalizing constant to reduce bias from self-normalization. In experiments with both simulated and real datasets, SMC-Wake fits variational distributions that approximate the posterior more accurately than existing methods.
Related papers
- Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
Variational mixtures with full-covariance structures suffer from a quadratic growth due to variational parameters with the number of parameters.
We propose a method for constructing an initial Gaussian model approximation that can be used to warm-start variational inference.
arXiv Detail & Related papers (2023-07-12T19:30:04Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Bayesian Pseudo-Coresets via Contrastive Divergence [5.479797073162603]
We introduce a novel approach for constructing pseudo-coresets by utilizing contrastive divergence.
It eliminates the need for approximations in the pseudo-coreset construction process.
We conduct extensive experiments on multiple datasets, demonstrating its superiority over existing BPC techniques.
arXiv Detail & Related papers (2023-03-20T17:13:50Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - An adaptive Hessian approximated stochastic gradient MCMC method [12.93317525451798]
We present an adaptive Hessian approximated gradient MCMC method to incorporate local geometric information while sampling from the posterior.
We adopt a magnitude-based weight pruning method to enforce the sparsity of the network.
arXiv Detail & Related papers (2020-10-03T16:22:15Z) - A Study of Gradient Variance in Deep Learning [56.437755740715396]
We introduce a method, Gradient Clustering, to minimize the variance of average mini-batch gradient with stratified sampling.
We measure the gradient variance on common deep learning benchmarks and observe that, contrary to common assumptions, gradient variance increases during training.
arXiv Detail & Related papers (2020-07-09T03:23:10Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Amortized variance reduction for doubly stochastic objectives [17.064916635597417]
Approximate inference in complex probabilistic models requires optimisation of doubly objective functions.
Current approaches do not take into account how mini-batchity affects samplingity, resulting in sub-optimal variance reduction.
We propose a new approach in which we use a recognition network to cheaply approximate the optimal control variate for each mini-batch, with no additional gradient computations.
arXiv Detail & Related papers (2020-03-09T13:23:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.