論文の概要: DiPaCo: Distributed Path Composition
- arxiv url: http://arxiv.org/abs/2403.10616v1
- Date: Fri, 15 Mar 2024 18:26:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 22:34:14.741744
- Title: DiPaCo: Distributed Path Composition
- Title(参考訳): DiPaCo: 分散パス構成
- Authors: Arthur Douillard, Qixuan Feng, Andrei A. Rusu, Adhiguna Kuncoro, Yani Donchev, Rachita Chhaparia, Ionel Gog, Marc'Aurelio Ranzato, Jiajun Shen, Arthur Szlam,
- Abstract要約: 本稿では,機械学習モデルのためのモジュールアーキテクチャとトレーニングアプローチを提案する。
トレーニング中、DiPaCoは共有モジュールのセットを通じてパスで配布する。
推論時には、モデル圧縮を必要とせずに、各入力に対して1つのパスだけを実行する必要がある。
- 参考スコア(独自算出の注目度): 31.686642863608558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Progress in machine learning (ML) has been fueled by scaling neural network models. This scaling has been enabled by ever more heroic feats of engineering, necessary for accommodating ML approaches that require high bandwidth communication between devices working in parallel. In this work, we propose a co-designed modular architecture and training approach for ML models, dubbed DIstributed PAth COmposition (DiPaCo). During training, DiPaCo distributes computation by paths through a set of shared modules. Together with a Local-SGD inspired optimization (DiLoCo) that keeps modules in sync with drastically reduced communication, Our approach facilitates training across poorly connected and heterogeneous workers, with a design that ensures robustness to worker failures and preemptions. At inference time, only a single path needs to be executed for each input, without the need for any model compression. We consider this approach as a first prototype towards a new paradigm of large-scale learning, one that is less synchronous and more modular. Our experiments on the widely used C4 benchmark show that, for the same amount of training steps but less wall-clock time, DiPaCo exceeds the performance of a 1 billion-parameter dense transformer language model by choosing one of 256 possible paths, each with a size of 150 million parameters.
- Abstract(参考訳): 機械学習(ML)の進歩は、ニューラルネットワークモデルのスケーリングによって加速されている。
このスケーリングは、並列に動作するデバイス間の高い帯域幅通信を必要とするMLアプローチの調整に必要な、よりヒロイックなエンジニアリングの成果によって実現されている。
本研究では,Distributed PAth Composition (DiPaCo) と呼ばれるMLモデルのモジュールアーキテクチャとトレーニング手法を提案する。
トレーニング中、DiPaCoは共有モジュールのセットを通じて、パスによる計算を分散する。
ローカル-SGD にインスパイアされた最適化 (DiLoCo) により,モジュール間の通信を劇的に削減すると同時に,作業者の障害やプリエンプションに対する堅牢性を確保する設計により,接続不良や異種作業者間のトレーニングを容易にする。
推論時には、モデル圧縮を必要とせずに、各入力に対して1つのパスだけを実行する必要がある。
このアプローチは大規模学習の新しいパラダイムに向けた最初のプロトタイプだと考えています。
広範に使用されているC4ベンチマーク実験の結果,DPaCoは1億5000万個のパラメータを持つ256個の経路のうちの1つを選択することで,10億パラメータの高密度トランスフォーマー言語モデルの性能を上回っていることがわかった。
関連論文リスト
- EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
本稿では,新しいパイプラインスケジューラであるEPS-MoEを紹介する。
その結果,既存の並列推論手法に比べて,プリフィルスループットが平均21%向上していることが判明した。
論文 参考訳(メタデータ) (2024-10-16T05:17:49Z) - Parm: Efficient Training of Large Sparsely-Activated Models with Dedicated Schedules [15.680276212483292]
本稿では,MP+EP+ESP学習を高速化するParmを提案する。
Parmは、1.13$times$から5.77$times$のスピードアップを実現し、1296年に手動で設定されたMoEレイヤと、2つの現実世界のMoEモデルで約3$times$の改善を行った。
論文 参考訳(メタデータ) (2024-06-30T05:55:11Z) - ATOM: Asynchronous Training of Massive Models for Deep Learning in a Decentralized Environment [7.916080032572087]
Atomは、分散化された環境で巨大なモデルの非同期トレーニング用に設計された、レジリエントな分散トレーニングフレームワークである。
atomは、スワップをシームレスにモデルし、トレーニングスループットを最適化するために複数のコピーを同時にトレーニングすることで、1つのホスト(ピア)に完全なLLMを適合させることを目的としている。
異なるGPT-3モデル構成を用いて実験したところ、最適ネットワーク接続のシナリオでは、原子は最先端の分散パイプライン並列化アプローチを組み込んだ場合、トレーニング効率を最大20倍に向上させることができることがわかった。
論文 参考訳(メタデータ) (2024-03-15T17:43:43Z) - MatFormer: Nested Transformer for Elastic Inference [94.1789252941718]
MatFormerは、様々なデプロイメント制約で弾力性を提供するように設計されたネストトランスフォーマーアーキテクチャである。
2.6BデコーダのみのMatFormer言語モデル(MatLM)は1.5Bから2.6Bまでの小さなモデルを抽出できることを示す。
また,MatFormerベースのViT(MatViT)エンコーダから抽出した小さなエンコーダは,適応的な大規模検索のための距離空間構造を保持する。
論文 参考訳(メタデータ) (2023-10-11T17:57:14Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - SWARM Parallelism: Training Large Models Can Be Surprisingly
Communication-Efficient [69.61083127540776]
ディープラーニングアプリケーションは、数十億のパラメータを持つ大きなモデルを使用することの恩恵を受ける。
これらのモデルのトレーニングは、特殊なHPCクラスタを必要とするため、非常に高価である。
安価な"プリエンプティブル"インスタンスを使用するか、あるいは複数のリージョンから既存のリソースをプールする。
論文 参考訳(メタデータ) (2023-01-27T18:55:19Z) - Does compressing activations help model parallel training? [64.59298055364336]
モデル並列性に対する圧縮法の有効性に関する実験的検討を行った。
圧縮アルゴリズムの3つの共通クラスを実装し,評価する。
我々は160以上の設定と8つの一般的なデータセットでこれらの手法を評価した。
論文 参考訳(メタデータ) (2023-01-06T18:58:09Z) - Deep Model Assembling [31.88606253639418]
本稿では,大規模モデルをトレーニングするための分割・分散戦略について検討する。
大きなモデルを小さなモジュールに分割し、個別にトレーニングし、トレーニングされたモジュールを再組み立てしてターゲットモデルを取得する。
すべてのモジュールを暗黙的にリンクするグローバルな共有メタモデルを導入します。
これにより、組み立てられた時に効果的に協調する高度に互換性のあるモジュールをトレーニングできます。
論文 参考訳(メタデータ) (2022-12-08T08:04:06Z) - Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel
Training [23.633810934134065]
Colossal-AIは、大規模モデルで最大2.76回のトレーニングスピードアップを達成することができる。
システムは、データ、パイプライン、テンソル、シーケンス並列化などの並列トレーニングメソッドをサポートする。
論文 参考訳(メタデータ) (2021-10-28T04:45:55Z) - Scaling Distributed Deep Learning Workloads beyond the Memory Capacity
with KARMA [58.040931661693925]
冗長な再計算とアウト・オブ・コアの手法を組み合わせた戦略を提案する。
最先端のアウト・オブ・コア手法を用いて,6種類のモデルで平均1.22倍の高速化を実現した。
我々のデータ並列化ソリューションは,Megatron-LMやTurning-NLGといった大規模モデルのトレーニングにおいて,複雑なハイブリッドモデル並列性よりも優れる。
論文 参考訳(メタデータ) (2020-08-26T07:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。