Quantum Fisher information and polaron picture for identification of transition coupling in quantum Rabi model
- URL: http://arxiv.org/abs/2403.10657v1
- Date: Fri, 15 Mar 2024 19:49:46 GMT
- Title: Quantum Fisher information and polaron picture for identification of transition coupling in quantum Rabi model
- Authors: Zu-Jian Ying, Wen-Long Wang, Bo-Jian Li,
- Abstract summary: We use the quantum Fisher information (QFI) in the quantum Rabi model to identify the transition coupling.
An accurate expression for the transition coupling is obtained by the inspiration from the fractional-power-law effect of polaron frequency renormalization.
- Score: 0.6027639313986529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum Rabi model (QRM) is a fundamental model for light-matter interactions. A fascinating feature of the QRM is that it manifests a quantum phase transition which is applicable for critical quantum metrology (CQM). Effective application for CQM needs the exact location of the transition point, however the conventional expression for the transition coupling is only valid in the extreme limit of low frequency, while apart from zero frequency an accurate location is still lacking. In the present work we conversely use the quantum Fisher information (QFI) in the CQM to identify the transition coupling, which finds out that transition coupling indeed much deviates from the conventional one once a finite frequency is turned on. Polaron picture is applied to analytically reproduce the numeric QFI. An accurate expression for the transition coupling is obtained by the inspiration from the fractional-power-law effect of polaron frequency renormalization. From the QFI in the polaron picture we find that the transition occurs around a point where the effective velocity and the susceptibility of the single-photon absorption rate reach maximum. Our result provides an accurate reference of transition couplings for quantum metrology at non-zero frequencies. The formulation of the QFI in the polaron picture also prepares an analytic method with an accurate compensation for the parameter regime difficult to access for the numerics. Besides the integer/fractional power law analysis to extract the underlying physics of transition, the QFI/velocity relation may also add some insight in bridging the QFI and transition observables.
Related papers
- Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Quantum coherence assisted dynamical phase transition [0.0]
We specialize our discussions on the one-dimensional transverse field quantum Ising model in the coherent Gibbs state.
After quenching the strength of the transverse field, the effects of quantum coherence are studied by Fisher zeros, rate function and winding number.
arXiv Detail & Related papers (2023-05-15T07:34:15Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
We address the problem of reliable provision of entangled qubits in quantum computing schemes.
We combine indirect transmission based on teleportation and distillation; (2) direct transmission, based on quantum error correction (QEC)
Our results show that ad-hoc asymmetric codes give, compared to conventional QEC, a performance boost and codeword size reduction both in a single link and in a quantum network scenario.
arXiv Detail & Related papers (2023-05-01T17:13:23Z) - Criticality-Enhanced Quantum Sensing in the Anisotropic Quantum Rabi
Model [6.284204043713657]
We generalize the framework for criticality-enhanced quantum sensing by the quantum Rabi model to its anisotropic counterpart.
We find that the contributions of the rotating-wave and counterrotating-wave interaction terms are symmetric at the limit of the infinite ratio of qubit frequency to field frequency.
arXiv Detail & Related papers (2023-02-27T11:20:31Z) - Critical Quantum Metrology in the Non-Linear Quantum Rabi Model [1.875899282042793]
The quantum Rabi model (QRM) with linear coupling between light mode and qubit exhibits the analog of a second order phase transition for vanishing mode frequency.
We show that the QRM including a non-linear coupling term exhibits much higher measurement precisions due to its first order like phase transition at emphfinite frequency.
arXiv Detail & Related papers (2022-06-16T19:03:28Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Dynamics of coherence: Maximal quantum Fisher information vs. Loschmidt
echo [0.0]
We consider the dynamics of maximal quantum Fisher information (MQFI) after sudden quenches for the one-dimensional transverse-field Ising model.
We name this phenomenon textitthe dynamical MQFI transitions, occurring at the critical times $t_c$.
arXiv Detail & Related papers (2020-06-25T14:21:13Z) - Detecting out-of-time-order correlations via quasi-adiabatic echoes as a
tool to reveal quantum coherence in equilibrium quantum phase transitions [0.0]
We show that an abrupt change in coherence and entanglement of the ground state is observable in the spectrum of multiple quantum coherence intensities.
Our scheme allows for the detection of OTOCs without time-reversal of coherent dynamics.
arXiv Detail & Related papers (2020-06-01T23:28:44Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.