Unscrambling of single-particle wave functions in systems localized through disorder and monitoring
- URL: http://arxiv.org/abs/2403.10725v4
- Date: Fri, 12 Jul 2024 19:12:07 GMT
- Title: Unscrambling of single-particle wave functions in systems localized through disorder and monitoring
- Authors: Marcin Szyniszewski,
- Abstract summary: We develop a process of finding a Slater determinant representation of free-fermion wave functions that accurately characterizes localized particles.
Our results unlock the potential of utilizing single-particle wave functions to gain valuable insights into the localization transition properties in systems such as monitored free fermions and disordered models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In systems undergoing localization-delocalization quantum phase transitions due to disorder or monitoring, there is a crucial need for robust methods capable of distinguishing phases and uncovering their intrinsic properties. In this work, we develop a process of finding a Slater determinant representation of free-fermion wave functions that accurately characterizes localized particles, a procedure we dub "unscrambling". The central idea is to minimize the overlap between envelopes of single-particle wave functions or, equivalently, to maximize the inverse participation ratio of each orbital. This numerically efficient methodology can differentiate between distinct types of wave functions: exponentially localized, power-law localized, and conformal critical, also revealing the underlying physics of these states. The method is readily extendable to systems in higher dimensions. Furthermore, we apply this approach to a more challenging problem involving disordered monitored free fermions in one dimension, where the unscrambling process unveils the presence of a conformal critical phase and a localized area-law quantum Zeno phase. Importantly, our method can also be extended to free fermion systems without particle number conservation, which we demonstrate by estimating the phase diagram of $\mathbb{Z}_2$-symmetric disordered monitored free fermions. Our results unlock the potential of utilizing single-particle wave functions to gain valuable insights into the localization transition properties in systems such as monitored free fermions and disordered models.
Related papers
- Identification of a natural fieldlike entanglement resource in trapped-ion chains [0.0]
The electromagnetic trapping of ion chains can be regarded as a process of non-trivial entangled quantum state preparation.
The decay of entanglement between disjoint subsets of local modes is found to exhibit features of entanglement structure.
A framework is established for initializing quantum field simulations via "imaging" extended entangled states from natural sources.
arXiv Detail & Related papers (2023-11-15T10:32:02Z) - Gauged cooling of topological excitations and emergent fermions on
quantum simulators [0.0]
Simulated cooling is a robust method for preparing low-energy states of many-body Hamiltonians on quantum simulators.
We show how to efficiently cool the ferromagnetic phase of the quantum Ising model, whose excitations are domain walls.
We show that our protocol can prepare the ground states of the ferromagnetic and paramagnetic phases equally efficiently.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - Free fermions under adaptive quantum dynamics [7.307017324268605]
We study free fermion systems under adaptive quantum dynamics consisting of unitary gates and projective measurements.
We find that the corrective unitary operations can steer the system into a state characterized by charge-density-wave order.
arXiv Detail & Related papers (2023-06-28T23:09:59Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Disordered monitored free fermions [0.0]
In monitored free-fermionic models, the steady state undergoes an entanglement transition from a logarithmically entangled critical state to area-law.
We show that the critical phase is stable up to a finite disorder and the criticality is consistent with the Berezinskii-Kosterlitz-Thouless universality.
Our work opens the avenue to probe this novel phase transition in electronic systems of quantum dot arrays and nanowires.
arXiv Detail & Related papers (2022-11-04T15:57:29Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.