Identification of a natural fieldlike entanglement resource in trapped-ion chains
- URL: http://arxiv.org/abs/2311.08842v2
- Date: Tue, 2 Jul 2024 17:42:34 GMT
- Title: Identification of a natural fieldlike entanglement resource in trapped-ion chains
- Authors: Natalie Klco, D. H. Beck,
- Abstract summary: The electromagnetic trapping of ion chains can be regarded as a process of non-trivial entangled quantum state preparation.
The decay of entanglement between disjoint subsets of local modes is found to exhibit features of entanglement structure.
A framework is established for initializing quantum field simulations via "imaging" extended entangled states from natural sources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The electromagnetic trapping of ion chains can be regarded as a process of non-trivial entangled quantum state preparation within Hilbert spaces of the local axial motional modes. To begin uncovering properties of this entanglement resource produced as a byproduct of conventional ion-trap quantum information processing, the quantum continuous-variable formalism is herein utilized to focus on the leading-order entangled ground state of local motional modes in the presence of a quadratic trapping potential. The decay of entanglement between disjoint subsets of local modes is found to exhibit features of entanglement structure and responses to partial measurement reminiscent of the free massless scalar field vacuum. With significant fidelities between the two, even for large system sizes, a framework is established for initializing quantum field simulations via "imaging" extended entangled states from natural sources, rather than building correlations through deep circuits of few-body entangling operators. By calculating probabilities in discrete Fock subspaces of the local motional modes, considerations are presented for locally transferring these pre-distributed entanglement resources to the qudits of ion internal energy levels, improving this procedure's anticipated experimental viability.
Related papers
- Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - Quasiperiodicity protects quantized transport in disordered systems without gaps [0.0]
We observe quantized currents that survive the addition of bounded local disorder in a driven Aubry-Andr'e-Harper chain.
We propose a protocol, directly realizable in for instance cold atoms or photonic experiments, which leverages this stability to prepare topological many-body states with high Chern numbers.
arXiv Detail & Related papers (2024-07-09T17:11:48Z) - Unscrambling of single-particle wave functions in systems localized through disorder and monitoring [0.0]
We develop a process of finding a Slater determinant representation of free-fermion wave functions that accurately characterizes localized particles.
Our results unlock the potential of utilizing single-particle wave functions to gain valuable insights into the localization transition properties in systems such as monitored free fermions and disordered models.
arXiv Detail & Related papers (2024-03-15T23:16:44Z) - Partial-transpose-guided entanglement classes and minimum noise filtering in many-body Gaussian quantum systems [1.243080988483032]
Two-mode bipartite entanglement structure, resembling that of pure states, is found in a class of many-body Gaussian quantum states.
These two entanglement classes are relevant in theoretical and experimental applications from the scalar field vacuum to the local axial motional modes of trapped ion chains.
arXiv Detail & Related papers (2024-02-21T15:49:33Z) - Locally purified density operators for noisy quantum circuits [17.38734393793605]
We show that mixed states generated from noisy quantum circuits can be efficiently represented by locally purified density operators (LPDOs)
We present a mapping from LPDOs of $N$ qubits to projected entangled-pair states of size $2times N$ and introduce a unified method for managing virtual and Kraus bonds.
arXiv Detail & Related papers (2023-12-05T16:10:30Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective [39.58317527488534]
We develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon.
We map this notion of fermionic-anyon separability to the free resources of matchgate circuits.
We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
arXiv Detail & Related papers (2023-06-01T15:25:19Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Stability of quantum eigenstates and kinetics of wave function collapse
in a fluctuating environment [0.0]
The work analyzes the stability of the quantum eigenstates when they are submitted to fluctuations.
In the limit of sufficiently slow kinetics, the quantum eigenstates show to remain stationary configurations.
The work shows that the final stationary eigenstate depends by the initial configuration of the superposition of states.
arXiv Detail & Related papers (2020-11-25T10:41:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.