ContourDiff: Unpaired Image Translation with Contour-Guided Diffusion Models
- URL: http://arxiv.org/abs/2403.10786v1
- Date: Sat, 16 Mar 2024 03:33:52 GMT
- Title: ContourDiff: Unpaired Image Translation with Contour-Guided Diffusion Models
- Authors: Yuwen Chen, Nicholas Konz, Hanxue Gu, Haoyu Dong, Yaqian Chen, Lin Li, Jisoo Lee, Maciej A. Mazurowski,
- Abstract summary: Accurately translating medical images across different modalities has numerous downstream clinical and machine learning applications.
We propose ContourDiff, a novel framework that leverages domain-invariant anatomical contour representations of images.
We evaluate our method by training a segmentation model on images translated from CT to MRI with their original CT masks and testing its performance on real MRIs.
- Score: 14.487188068402178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately translating medical images across different modalities (e.g., CT to MRI) has numerous downstream clinical and machine learning applications. While several methods have been proposed to achieve this, they often prioritize perceptual quality with respect to output domain features over preserving anatomical fidelity. However, maintaining anatomy during translation is essential for many tasks, e.g., when leveraging masks from the input domain to develop a segmentation model with images translated to the output domain. To address these challenges, we propose ContourDiff, a novel framework that leverages domain-invariant anatomical contour representations of images. These representations are simple to extract from images, yet form precise spatial constraints on their anatomical content. We introduce a diffusion model that converts contour representations of images from arbitrary input domains into images in the output domain of interest. By applying the contour as a constraint at every diffusion sampling step, we ensure the preservation of anatomical content. We evaluate our method by training a segmentation model on images translated from CT to MRI with their original CT masks and testing its performance on real MRIs. Our method outperforms other unpaired image translation methods by a significant margin, furthermore without the need to access any input domain information during training.
Related papers
- Anatomically-Controllable Medical Image Generation with Segmentation-Guided Diffusion Models [11.835841459200632]
We propose a diffusion model-based method that supports anatomically-controllable medical image generation.
We additionally introduce a random mask ablation training algorithm to enable conditioning on a selected combination of anatomical constraints.
SegGuidedDiff reaches a new state-of-the-art in the faithfulness of generated images to input anatomical masks.
arXiv Detail & Related papers (2024-02-07T19:35:09Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Contrastive Semi-supervised Learning for Domain Adaptive Segmentation
Across Similar Anatomical Structures [21.54339967787734]
We propose Contrastive Semi-supervised learning for Cross Anatomy Domain Adaptation.
It adapts a model to segment similar structures in a target domain.
It requires only limited annotations in the target domain.
arXiv Detail & Related papers (2022-08-18T02:54:04Z) - Contrastive Image Synthesis and Self-supervised Feature Adaptation for
Cross-Modality Biomedical Image Segmentation [8.772764547425291]
CISFA builds on image domain translation and unsupervised feature adaptation for cross-modality biomedical image segmentation.
We use a one-sided generative model and add a weighted patch-wise contrastive loss between sampled patches of the input image and the corresponding synthetic image.
We evaluate our methods on segmentation tasks containing CT and MRI images for abdominal cavities and whole hearts.
arXiv Detail & Related papers (2022-07-27T01:49:26Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
Cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists.
We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups.
arXiv Detail & Related papers (2021-03-05T16:22:31Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Unsupervised Bidirectional Cross-Modality Adaptation via Deeply
Synergistic Image and Feature Alignment for Medical Image Segmentation [73.84166499988443]
We present a novel unsupervised domain adaptation framework, named as Synergistic Image and Feature Alignment (SIFA)
Our proposed SIFA conducts synergistic alignment of domains from both image and feature perspectives.
Experimental results on two different tasks demonstrate that our SIFA method is effective in improving segmentation performance on unlabeled target images.
arXiv Detail & Related papers (2020-02-06T13:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.