論文の概要: Multi-party Response Generation with Relation Disentanglement
- arxiv url: http://arxiv.org/abs/2403.10827v2
- Date: Sat, 23 Mar 2024 02:19:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 23:01:39.705484
- Title: Multi-party Response Generation with Relation Disentanglement
- Title(参考訳): リレージディアンタングメントを用いた多人数応答生成
- Authors: Tianhao Dai, Chengyu Huang, Lizi Liao,
- Abstract要約: 既存のニューラルレスポンス生成モデルは、双方向の会話で大幅に改善されている。
しかし、現実世界の対話の多くは複数の対話者を含み、会話の文脈の構造はより複雑である。
本研究では,人間ラベルを使わずに,会話の文脈内での微妙な手がかりに基づいて関係性を推論する手法を提案する。
- 参考スコア(独自算出の注目度): 8.478506896774137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing neural response generation models have achieved impressive improvements for two-party conversations, which assume that utterances are sequentially organized. However, many real-world dialogues involve multiple interlocutors and the structure of conversational context is much more complex, e.g. utterances from different interlocutors can occur "in parallel". Facing this challenge, there are works trying to model the relations among utterances or interlocutors to facilitate response generation with clearer context. Nonetheless, these methods rely heavily on such relations and all assume that these are given beforehand, which is impractical and hinders the generality of such methods. In this work, we propose to automatically infer the relations via relational thinking on subtle clues inside the conversation context without any human label, and leverage these relations to guide the neural response generation. Specifically, we first apply a deep graph random process to fully consider all possible relations among utterances in the conversational context. Then the inferred relation graphs are integrated with a variational auto-encoder framework to train a GAN for structure-aware response generation. Experimental results on the Ubuntu Internet Relay Chat (IRC) channel benchmark and the most recent Movie Dialogues show that our method outperforms various baseline models for multi-party response generation.
- Abstract(参考訳): 既存のニューラルレスポンス生成モデルは、発話が逐次的に組織化されていると仮定して、二者会話の印象的な改善を実現している。
しかし、現実世界の対話の多くは複数のインターロケータを伴い、会話のコンテキストの構造はずっと複雑であり、例えば異なるインターロケータからの発声は「平行に」起こる。
この課題に直面して、より明確な文脈で応答生成を促進するために、発話やインターロケータ間の関係をモデル化しようとする作業がある。
それにもかかわらず、これらの手法はそのような関係に強く依存しており、これらが事前に与えられると仮定し、これは現実的ではなく、そのような方法の一般化を妨げる。
本研究では,人間のラベルを使わずに,会話の文脈内で微妙な手がかりに基づいて,関係性を自動推論し,これらの関係を利用して神経応答生成を導くことを提案する。
具体的には、まずディープグラフのランダムな処理を適用し、会話の文脈における発話間の全ての可能性について検討する。
次に、推定関係グラフを変分自動エンコーダフレームワークに統合し、構造認識応答生成のためのGANをトレーニングする。
Ubuntu Internet Relay Chat (IRC) チャネルベンチマークと最新のMovie Dialoguesによる実験結果から,本手法はマルチパーティ応答生成のための各種ベースラインモデルより優れていることが示された。
関連論文リスト
- A Stack-Propagation Framework for Low-Resource Personalized Dialogue Generation [29.348053519918928]
対話生成および理解パイプラインを学習するための新しいスタックプロパゲーションフレームワークを提案する。
提案するフレームワークは、より小さなパーソナライズされた対話データから学ぶための、スタック化されたエンコーダとデコーダの恩恵を受けることができる。
論文 参考訳(メタデータ) (2024-10-26T13:09:21Z) - PICK: Polished & Informed Candidate Scoring for Knowledge-Grounded
Dialogue Systems [59.1250765143521]
現在の知識接地対話システムは、生成された応答を人間に好まれる品質に合わせるのに失敗することが多い。
我々は,世代別再描画フレームワークであるPolseed & Informed Candidate Scoring (PICK)を提案する。
対話履歴に関連性を維持しつつ,より忠実な応答を生成するためのPICKの有効性を示す。
論文 参考訳(メタデータ) (2023-09-19T08:27:09Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
我々は、多人数対話の会話構造、すなわち、各発話が応答する相手を理解するモデルを事前訓練する。
ラベル付きデータを完全に活用するために,談話構造を潜在変数として扱い,それらを共同で推論し,談話認識モデルを事前学習することを提案する。
論文 参考訳(メタデータ) (2023-05-24T14:06:27Z) - Improving a sequence-to-sequence nlp model using a reinforcement
learning policy algorithm [0.0]
対話生成の現在のニューラルネットワークモデルは、おしゃべりエージェントの回答を生成する上で非常に有望である。
しかし、彼らは発話を1度ずつ予測し、将来の結果に対する彼らの影響を無視している。
本研究は,対話の長期的成功に基づくニューラルな会話モデル構築に向けた予備的なステップを記念するものである。
論文 参考訳(メタデータ) (2022-12-28T22:46:57Z) - HeterMPC: A Heterogeneous Graph Neural Network for Response Generation
in Multi-Party Conversations [76.64792382097724]
We present HeterMPC, a graph-based neural network for response generation in multi-party conversation (MPCs)。
HeterMPCは、グラフ内の2種類のノードと同時に、発話とインターロケータのセマンティクスをモデル化する。
マルチホップ更新により、HeterMPCは応答生成のための会話の構造的知識を適切に活用することができる。
論文 参考訳(メタデータ) (2022-03-16T09:50:32Z) - A Speaker-aware Parallel Hierarchical Attentive Encoder-Decoder Model
for Multi-turn Dialogue Generation [13.820298189734686]
本稿では,マルチターン会話における話者の区別を強調するオープンドメイン対話生成モデルを提案する。
実験の結果,PHAEDは自動評価と人的評価の両面で最先端の成績を示した。
論文 参考訳(メタデータ) (2021-10-13T16:08:29Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Generating Dialogue Responses from a Semantic Latent Space [75.18449428414736]
語彙のエンドツーエンド分類に代わる方法を提案する。
潜在空間上の回帰タスクとして,プロンプトと応答のペア関係を学習する。
人間の評価は、連続した空間でタスクを学習すると、関連性と情報性の両方を持つ応答が生成されることを示した。
論文 参考訳(メタデータ) (2020-10-04T19:06:16Z) - Ranking Enhanced Dialogue Generation [77.8321855074999]
対話履歴を効果的に活用する方法は、マルチターン対話生成において重要な問題である。
これまでの研究は通常、歴史をモデル化するために様々なニューラルネットワークアーキテクチャを使用していた。
本稿では,ランキング拡張対話生成フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-13T01:49:56Z) - Diversifying Dialogue Generation with Non-Conversational Text [38.03510529185192]
非会話的テキストを活用することで対話生成を多様化する新しい視点を提案する。
我々は、フォーラムコメント、イディオム、本スニペットを含む複数の情報源から、大規模な非会話コーパスを収集する。
得られたモデルは、2つの会話データセット上でテストされ、コンテキストとの関連性を犠牲にすることなく、はるかに多様な応答を生成することが示されている。
論文 参考訳(メタデータ) (2020-05-09T02:16:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。