論文の概要: COVID-CT-H-UNet: a novel COVID-19 CT segmentation network based on attention mechanism and Bi-category Hybrid loss
- arxiv url: http://arxiv.org/abs/2403.10880v1
- Date: Sat, 16 Mar 2024 10:25:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 21:15:47.038788
- Title: COVID-CT-H-UNet: a novel COVID-19 CT segmentation network based on attention mechanism and Bi-category Hybrid loss
- Title(参考訳): COVID-CT-H-UNet : 注意機構と二カテゴリーハイブリッド損失に基づく新しい新型コロナウイルスCTセグメンテーションネットワーク
- Authors: Anay Panja, Somenath Kuiry, Alaka Das, Mita Nasipuri, Nibaran Das,
- Abstract要約: 新型コロナウイルス(COVID-19)の流行は、医療研究に重要な焦点をあてている。
RT-PCRの補充と、CT画像による新型コロナウイルスの病理学的研究が重要視されている。
本稿では,これらの問題を解決するために,COVID-19 CTセグメンテーションネットワークであるCOVID-CT-H-UNetを提案する。
- 参考スコア(独自算出の注目度): 7.139873310466422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since 2019, the global COVID-19 outbreak has emerged as a crucial focus in healthcare research. Although RT-PCR stands as the primary method for COVID-19 detection, its extended detection time poses a significant challenge. Consequently, supplementing RT-PCR with the pathological study of COVID-19 through CT imaging has become imperative. The current segmentation approach based on TVLoss enhances the connectivity of afflicted areas. Nevertheless, it tends to misclassify normal pixels between certain adjacent diseased regions as diseased pixels. The typical Binary cross entropy(BCE) based U-shaped network only concentrates on the entire CT images without emphasizing on the affected regions, which results in hazy borders and low contrast in the projected output. In addition, the fraction of infected pixels in CT images is much less, which makes it a challenge for segmentation models to make accurate predictions. In this paper, we propose COVID-CT-H-UNet, a COVID-19 CT segmentation network to solve these problems. To recognize the unaffected pixels between neighbouring diseased regions, extra visual layer information is captured by combining the attention module on the skip connections with the proposed composite function Bi-category Hybrid Loss. The issue of hazy boundaries and poor contrast brought on by the BCE Loss in conventional techniques is resolved by utilizing the composite function Bi-category Hybrid Loss that concentrates on the pixels in the diseased area. The experiment shows when compared to the previous COVID-19 segmentation networks, the proposed COVID-CT-H-UNet's segmentation impact has greatly improved, and it may be used to identify and study clinical COVID-19.
- Abstract(参考訳): 2019年以降、新型コロナウイルス(COVID-19)の世界的な流行は、医療研究に重要な焦点をあてている。
RT-PCRは、COVID-19検出の主要な方法であるが、その延長検出時間は重要な課題である。
以上の結果から, RT-PCRをCT画像で診断し, 診断に有用であることが示唆された。
TVLossに基づく現在のセグメンテーションアプローチは、障害領域の接続性を高める。
それにもかかわらず、特定の隣接する疾患領域間で通常のピクセルを病気のピクセルと誤分類する傾向がある。
典型的なバイナリクロスエントロピー(BCE)ベースのU字型ネットワークは、影響領域を強調せずにCT画像全体にのみ集中し、その結果、投影された出力のぼんやりした境界と低コントラストが生じる。
さらに、CT画像中の感染画素の比率ははるかに小さく、セグメント化モデルが正確な予測を行うのが困難である。
本稿では,これらの問題を解決するために,COVID-19 CTセグメンテーションネットワークであるCOVID-CT-H-UNetを提案する。
近隣の疾患領域間の未影響画素を認識するために、スキップ接続上のアテンションモジュールと、提案した複合機能Biカテゴリハイブリッドロスとを組み合わせることで、余分な視覚層情報を取得する。
疾患領域の画素に集中する複合機能 Bi-category Hybrid Loss を利用することにより, 従来のBCE損失による曖昧な境界とコントラストの問題を解決する。
この実験は、以前のCOVID-19セグメンテーションネットワークと比較して、提案されているCOVID-CT-H-UNetのセグメンテーションの影響が大幅に改善され、臨床的な新型コロナウイルスの特定と研究に使用される可能性があることを示している。
関連論文リスト
- CDSE-UNet: Enhancing COVID-19 CT Image Segmentation with Canny Edge
Detection and Dual-Path SENet Feature Fusion [10.831487161893305]
CDSE-UNetは、Canny演算子エッジ検出とデュアルパスSENet機能融合機構を統合した、新しいUNetベースのセグメンテーションモデルである。
我々は,UNetの標準畳み込みを代替するマルチスケール畳み込み手法を開発し,病変の大きさや形状に適応した。
公開データセットの評価では、他の主要なモデルよりもCDSE-UNetの方が優れた性能を示している。
論文 参考訳(メタデータ) (2024-03-03T13:36:07Z) - Multi-scale alignment and Spatial ROI Module for COVID-19 Diagnosis [13.31017458409054]
本研究では,異なる解像度でコンテキスト情報を統合するために,深部空間ピラミッドプーリング(D-SPP)モジュールを提案する。
また,病変部位に注意を向け,無関係な情報から干渉を取り除くためのCIDモジュールも提案する。
以上の結果から,CTおよびCXR画像における新型コロナウイルスの病変の検出精度が向上した。
論文 参考訳(メタデータ) (2022-07-04T12:07:17Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - PSGR: Pixel-wise Sparse Graph Reasoning for COVID-19 Pneumonia
Segmentation in CT Images [83.26057031236965]
画像中の新型コロナウイルス感染領域セグメンテーションの長距離依存性のモデリングを強化するために,PSGRモジュールを提案する。
PSGRモジュールは不正確なピクセルからノードへの投影を回避し、グローバルな推論のために各ピクセル固有の情報を保存する。
このソリューションは、3つの公開データセット上の4つの広く使われているセグメンテーションモデルに対して評価されている。
論文 参考訳(メタデータ) (2021-08-09T04:58:23Z) - Quadruple Augmented Pyramid Network for Multi-class COVID-19
Segmentation via CT [1.6815638149823744]
新型コロナウイルス(COVID-19)は、世界で最も深刻な感染症の1つとなっています。
本稿では,放射線科医が肺の容積を推定するためのマルチクラスctセグメンテーションを提案する。
論文 参考訳(メタデータ) (2021-03-09T16:48:15Z) - Classification and Region Analysis of COVID-19 Infection using Lung CT
Images and Deep Convolutional Neural Networks [0.8224695424591678]
本研究は、肺CT画像中のCOVID-19感染領域を記述するための2段階の深層畳み込みニューラルネットワーク(CNN)に基づくフレームワークを提案する。
第1段階では、2段階の離散ウェーブレット変換を用いて、COVID-19特異的CT画像の特徴を増強する。
これらの拡張CT画像は、提案したカスタムメイドの深部CoV-CTNetを用いて分類される。
第2段階では、新型コロナウイルス感染症領域の同定と解析のためのセグメンテーションモデルに、感染画像として分類されたCT画像を提供する。
論文 参考訳(メタデータ) (2020-09-16T02:28:46Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
我々は、胸部CT画像からCOVID-19の症例を検出するのに適した、深層畳み込みニューラルネットワークアーキテクチャであるCOVIDNet-CTを紹介した。
また,中国生体情報センターが収集したCT画像データから得られたベンチマークCT画像データセットであるCOVIDx-CTも紹介した。
論文 参考訳(メタデータ) (2020-09-08T15:49:55Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
CT画像からの肺感染症の自動検出は、新型コロナウイルスに対処するための従来の医療戦略を強化する大きな可能性を秘めている。
CTスライスから感染領域を分割することは、高い感染特性の変化、感染と正常な組織の間の低強度のコントラストなど、いくつかの課題に直面している。
これらの課題に対処するため, 胸部CTスライスから感染部位を自動的に同定する, 新型のCOVID-19 Deep Lung infection Network (Inf-Net) が提案されている。
論文 参考訳(メタデータ) (2020-04-22T07:30:56Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
新型コロナウイルス感染症(COVID-19)は世界中で急速に広がり、公衆衛生や経済に大きな影響を及ぼしている。
新型コロナウイルスによる肺感染症を効果的に定量化する研究はいまだにない。
複数の新型コロナウイルス感染症領域の自動セグメンテーションのための新しいディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-12T16:24:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。