論文の概要: ARC-NeRF: Area Ray Casting for Broader Unseen View Coverage in Few-shot Object Rendering
- arxiv url: http://arxiv.org/abs/2403.10906v2
- Date: Mon, 07 Apr 2025 05:27:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 02:47:18.050016
- Title: ARC-NeRF: Area Ray Casting for Broader Unseen View Coverage in Few-shot Object Rendering
- Title(参考訳): ARC-NeRF:Few-shot Object Renderingにおける広視野表示のためのエリアレイキャスティング
- Authors: Seunghyeon Seo, Yeonjin Chang, Jayeon Yoo, Seungwoo Lee, Hojun Lee, Nojun Kwak,
- Abstract要約: 本研究では,新規なエリアレイキャスティング戦略を用いた効果的な正則化手法であるARC-NeRFを提案する。
我々のARC-NeRFはベースラインより優れており、シャープに描画された細部を持つ複数のベンチマークで競合する結果が得られる。
- 参考スコア(独自算出の注目度): 24.521777082791473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in the Neural Radiance Field (NeRF) have enhanced its capabilities for novel view synthesis, yet its reliance on dense multi-view training images poses a practical challenge, often leading to artifacts and a lack of fine object details. Addressing this, we propose ARC-NeRF, an effective regularization-based approach with a novel Area Ray Casting strategy. While the previous ray augmentation methods are limited to covering only a single unseen view per extra ray, our proposed Area Ray covers a broader range of unseen views with just a single ray and enables an adaptive high-frequency regularization based on target pixel photo-consistency. Moreover, we propose luminance consistency regularization, which enhances the consistency of relative luminance between the original and Area Ray, leading to more accurate object textures. The relative luminance, as a free lunch extra data easily derived from RGB images, can be effectively utilized in few-shot scenarios where available training data is limited. Our ARC-NeRF outperforms its baseline and achieves competitive results on multiple benchmarks with sharply rendered fine details.
- Abstract(参考訳): ニューラル・ラジアンス・フィールド(NeRF)の最近の進歩は、新しいビュー合成能力を強化しているが、密集したマルチビュー・トレーニング画像への依存は現実的な課題であり、しばしば人工物や細かなオブジェクトの詳細の欠如につながっている。
そこで我々は,新しいエリアレイキャスティング戦略を用いた効果的な正規化手法ARC-NeRFを提案する。
従来の光線増倍法は1光線当たり1つの見えないビューのみをカバーするに限られていたが,提案したエリアレイは1光線だけで広い範囲の見えないビューをカバーし,対象画素の光一貫性に基づいた適応的な高周波正則化を可能にする。
さらに, 輝度整合性正則化を提案し, 元の光とエリアレイとの相対輝度の整合性を高め, より正確な物体テクスチャを導出する。
相対輝度は、RGB画像から容易に抽出できる無料のランチ追加データとして、利用可能なトレーニングデータが制限された数ショットのシナリオで有効に利用することができる。
我々のARC-NeRFはベースラインより優れており、シャープに描画された細部を持つ複数のベンチマークで競合する結果が得られる。
関連論文リスト
- DivCon-NeRF: Generating Augmented Rays with Diversity and Consistency for Few-shot View Synthesis [24.645337338400335]
多様性と一貫性を両立させるDivCon-NeRFを提案する。
DivCon-NeRFは、内面拡大を導入することにより、様々な視点の角度と距離をランダム化する。
Blender, LLFF, DTUデータセット上での最先端性能を実現し, フローターと視覚歪みを大幅に低減する。
論文 参考訳(メタデータ) (2025-03-17T08:59:34Z) - NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
最近の研究は、遠方の環境照明の詳細な明細な外観を描画するNeRFの能力を改善しているが、近い内容の一貫した反射を合成することはできない。
我々はこれらの問題をレイトレーシングに基づくアプローチで解決する。
このモデルでは、それぞれのカメラ線に沿った点における視界依存放射率を求めるために高価なニューラルネットワークをクエリする代わりに、これらの点から光を流し、NeRF表現を通して特徴ベクトルを描画します。
論文 参考訳(メタデータ) (2024-05-23T17:59:57Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
そこで本研究では,Sparse LDRパノラマ画像からの照射場を用いて,忠実な幾何復元のための観測回数を増やすことを提案する。
実験により、照射場は幾何復元とHDR再構成の両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-26T08:10:22Z) - Efficient Ray Sampling for Radiance Fields Reconstruction [4.004168836949491]
レイサンプリング戦略は ネットワーク収束に大きな影響を与えます
ニューラルレイディアンス場に対する新しいレイサンプリング手法を提案する。
提案手法は,公開ベンチマークデータセットにおける最先端技術よりも優れていた。
論文 参考訳(メタデータ) (2023-08-29T18:11:32Z) - FlipNeRF: Flipped Reflection Rays for Few-shot Novel View Synthesis [30.25904672829623]
FlipNeRFは,提案したフレキシブルリフレクション線を利用して,数発の新規ビュー合成のための新しい正規化手法である。
FlipNeRFは、異なるシーン構造全体にわたって効果的に浮かぶアーティファクトを削減し、より信頼性の高いアウトプットを見積もることができる。
論文 参考訳(メタデータ) (2023-06-30T15:11:00Z) - Spatiotemporally Consistent HDR Indoor Lighting Estimation [66.26786775252592]
本研究では,屋内照明推定問題を解決するための物理動機付きディープラーニングフレームワークを提案する。
深度マップを用いた1枚のLDR画像から,任意の画像位置における空間的に一貫した照明を予測できる。
我々のフレームワークは、最先端の単一画像やビデオベースの手法と比較して、高画質で光リアリスティック照明予測を実現する。
論文 参考訳(メタデータ) (2023-05-07T20:36:29Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - Re-ReND: Real-time Rendering of NeRFs across Devices [56.081995086924216]
Re-ReNDは、NeRFを標準グラフィックスパイプラインで効率的に処理できる表現に変換することで、リアルタイムのパフォーマンスを実現するように設計されている。
Re-ReNDはレンダリング速度が2.6倍に向上し、最先端技術では品質が損なわれることなく達成できることがわかった。
論文 参考訳(メタデータ) (2023-03-15T15:59:41Z) - GeCoNeRF: Few-shot Neural Radiance Fields via Geometric Consistency [31.22435282922934]
我々は、幾何認識整合性正規化を伴う数ショット設定でニューラルラジアンス場(NeRF)を正則化する新しいフレームワークを提案する。
本研究では,最新の数発のNeRFモデルと比較して,競争力のある結果が得られることを示す。
論文 参考訳(メタデータ) (2023-01-26T05:14:12Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
ニューラルな暗黙表現に基づく数ショットの新規ビュー合成のための情報理論正規化手法を提案する。
提案手法は,不十分な視点で発生する潜在的な復元の不整合を最小化する。
複数の標準ベンチマークにおいて,既存のニューラルビュー合成手法と比較して一貫した性能向上を実現している。
論文 参考訳(メタデータ) (2021-12-31T11:56:01Z) - Learning Neural Light Fields with Ray-Space Embedding Networks [51.88457861982689]
我々は、コンパクトで、光線に沿った統合放射率を直接予測する新しいニューラル光場表現を提案する。
提案手法は,Stanford Light Field データセットのような,高密度の前方向きデータセットの最先端品質を実現する。
論文 参考訳(メタデータ) (2021-12-02T18:59:51Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z) - Towards High Fidelity Monocular Face Reconstruction with Rich
Reflectance using Self-supervised Learning and Ray Tracing [49.759478460828504]
ディープニューラルネットワークエンコーダと異なるレンダリングを組み合わせた手法が、幾何学、照明、反射の非常に高速な単分子再構成の道を開いた。
古典的な最適化ベースのフレームワーク内での単眼顔再構築のためにレイトレースが導入されました。
一般シーンにおける復元品質と堅牢性を大幅に向上させる新しい手法を提案します。
論文 参考訳(メタデータ) (2021-03-29T08:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。