Inducing Individual Students' Learning Strategies through Homomorphic POMDPs
- URL: http://arxiv.org/abs/2403.10930v1
- Date: Sat, 16 Mar 2024 14:06:29 GMT
- Title: Inducing Individual Students' Learning Strategies through Homomorphic POMDPs
- Authors: Huifan Gao, Yifeng Zeng, Yinghui Pan,
- Abstract summary: We propose the homomorphic POMDP (H-POMDP) model to accommodate multiple cognitive patterns.
Based on the H-POMDP model, we are able to represent different cognitive patterns from the data.
We conduct experiments to show that, in comparison to the general POMDP approach, the H-POMDP model demonstrates better precision when modelling mixed data from multiple cognitive patterns.
- Score: 3.388937792941359
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimizing students' learning strategies is a crucial component in intelligent tutoring systems. Previous research has demonstrated the effectiveness of devising personalized learning strategies for students by modelling their learning processes through partially observable Markov decision process (POMDP). However, the research holds the assumption that the student population adheres to a uniform cognitive pattern. While this assumption simplifies the POMDP modelling process, it evidently deviates from a real-world scenario, thus reducing the precision of inducing individual students' learning strategies. In this article, we propose the homomorphic POMDP (H-POMDP) model to accommodate multiple cognitive patterns and present the parameter learning approach to automatically construct the H-POMDP model. Based on the H-POMDP model, we are able to represent different cognitive patterns from the data and induce more personalized learning strategies for individual students. We conduct experiments to show that, in comparison to the general POMDP approach, the H-POMDP model demonstrates better precision when modelling mixed data from multiple cognitive patterns. Moreover, the learning strategies derived from H-POMDPs exhibit better personalization in the performance evaluation.
Related papers
- Efficient Solution and Learning of Robust Factored MDPs [57.2416302384766]
Learning r-MDPs from interactions with an unknown environment enables the synthesis of robust policies with provable guarantees on performance.<n>We propose novel methods for solving and learning r-MDPs based on factored state representations.
arXiv Detail & Related papers (2025-08-01T15:23:15Z) - Individual differences in the cognitive mechanisms of planning strategy discovery [0.9821874476902969]
We investigate whether incorporating cognitive mechanisms that might facilitate human strategy discovery can bring models of metacognitive reinforcement learning closer to human performance.<n>We consider intrinsically generated metacognitive pseudo-rewards, subjective effort valuation, and termination deliberation.<n>While these enhancements provided valuable insights into individual differences and the effect of these mechanisms on strategy discovery, they did not fully close the gap between model and human performance.
arXiv Detail & Related papers (2025-05-29T14:57:34Z) - Uncovering Student Engagement Patterns in Moodle with Interpretable Machine Learning [0.0]
This study introduces a methodology for quantifying engagement across an entire module using virtual learning environment (VLE) activity log data.
Using study session frequency, immediacy, and diversity, we create a cumulative engagement metric.
In a case study of a computing module at University College London's Department of Statistical Science, we examine how delivery methods impact student behaviour.
arXiv Detail & Related papers (2024-12-16T14:47:25Z) - Aligning Visual Contrastive learning models via Preference Optimization [0.9438963196770565]
This paper introduces a novel method for training contrastive learning models using different Preference Optimization (PO) methods to break down complex concepts.
Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task.
In particular, we focus on enhancing model robustness against typographic attacks and inductive biases, commonly seen in contrastive vision-language models like CLIP.
arXiv Detail & Related papers (2024-11-12T08:14:54Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - RIGL: A Unified Reciprocal Approach for Tracing the Independent and Group Learning Processes [22.379764500005503]
We propose RIGL, a unified Reciprocal model to trace knowledge states at both the individual and group levels.
In this paper, we introduce a time frame-aware reciprocal embedding module to concurrently model both student and group response interactions.
We design a relation-guided temporal attentive network, comprised of dynamic graph modeling coupled with a temporal self-attention mechanism.
arXiv Detail & Related papers (2024-06-18T10:16:18Z) - Examining Changes in Internal Representations of Continual Learning Models Through Tensor Decomposition [5.01338577379149]
Continual learning (CL) has spurred the development of several methods aimed at consolidating previous knowledge across sequential learning.
We propose a novel representation-based evaluation framework for CL models.
arXiv Detail & Related papers (2024-05-06T07:52:44Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Multi-Layer Personalized Federated Learning for Mitigating Biases in Student Predictive Analytics [8.642174401125263]
We propose a Multi-Layer Personalized Federated Learning (MLPFL) methodology to optimize inference accuracy over different layers of student grouping criteria.
In our approach, personalized models for individual student subgroups are derived from a global model.
Experiments on three real-world online course datasets show significant improvements achieved by our approach over existing student modeling benchmarks.
arXiv Detail & Related papers (2022-12-05T17:27:28Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision.
We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each.
arXiv Detail & Related papers (2022-09-18T18:15:38Z) - Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning [7.040747348755578]
Traditional learning-based approaches to student modeling generalize poorly to underrepresented student groups due to biases in data availability.
We propose a methodology for predicting student performance from their online learning activities that optimize inference accuracy over different demographic groups such as race and gender.
arXiv Detail & Related papers (2022-08-02T00:22:20Z) - Model-free Representation Learning and Exploration in Low-rank MDPs [64.72023662543363]
We present the first model-free representation learning algorithms for low rank MDPs.
Key algorithmic contribution is a new minimax representation learning objective.
Result can accommodate general function approximation to scale to complex environments.
arXiv Detail & Related papers (2021-02-14T00:06:54Z) - PAC Bounds for Imitation and Model-based Batch Learning of Contextual
Markov Decision Processes [31.83144400718369]
We consider the problem of batch multi-task reinforcement learning with observed context descriptors, motivated by its application to personalized medical treatment.
We study two general classes of learning algorithms: direct policy learning (DPL), an imitation-learning based approach which learns from expert trajectories, and model-based learning.
arXiv Detail & Related papers (2020-06-11T11:57:08Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.